Predicting the lung compliance of mechanically ventilated patients via statistical modeling

被引:2
作者
Ganzert, Steven [1 ]
Kramer, Stefan [1 ]
Guttmann, Josef [2 ]
机构
[1] Tech Univ Munich, Inst Informat I12, D-85748 Garching, Germany
[2] Univ Med Ctr Freiburg, Div Anesthesiol & Crit Care Med, D-79106 Freiburg, Germany
关键词
mechanical ventilation; ventilator associated lung injury (VALI); lung-protective ventilation; acute respiratory distress syndrome (ARDS); machine learning; Gaussian process modeling; PRESSURE-VOLUME CURVES;
D O I
10.1088/0967-3334/33/3/345
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or 'compliance' of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase/decrease of PEEP would lead to an increase/decrease of the compliance. However, the prediction of the complete pressure-volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure-volume curves.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 50 条
[1]   Predicting Outcome in Mechanically Ventilated Pediatric Patients [J].
Kesici, Selman ;
Kenc, Senay ;
Yetimakman, Ayse Filiz ;
Bayrakci, Benan .
JOURNAL OF PEDIATRIC INTENSIVE CARE, 2020, 9 (02) :92-98
[2]   Lung monitoring at the bedside in mechanically ventilated patients [J].
Blankman, Paul ;
Gommers, Diederik .
CURRENT OPINION IN CRITICAL CARE, 2012, 18 (03) :261-266
[3]   Lung strain and biological response in mechanically ventilated patients [J].
Adrián González-López ;
Emilio García-Prieto ;
Estefanía Batalla-Solís ;
Laura Amado-Rodríguez ;
Noelia Avello ;
Lluís Blanch ;
Guillermo M. Albaiceta .
Intensive Care Medicine, 2012, 38 :240-247
[4]   Lung strain and biological response in mechanically ventilated patients [J].
Gonzalez-Lopez, Adrian ;
Garcia-Prieto, Emilio ;
Batalla-Solis, Estefania ;
Amado-Rodriguez, Laura ;
Avello, Noelia ;
Blanch, Lluis ;
Albaiceta, Guillermo M. .
INTENSIVE CARE MEDICINE, 2012, 38 (02) :240-247
[5]   An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients [J].
Li Bassi, Gianluigi ;
Suen, Jacky Y. ;
Dalton, Heidi J. ;
White, Nicole ;
Shrapnel, Sally ;
Fanning, Jonathon P. ;
Liquet, Benoit ;
Hinton, Samuel ;
Vuorinen, Aapeli ;
Booth, Gareth ;
Millar, Jonathan E. ;
Forsyth, Simon ;
Panigada, Mauro ;
Laffey, John ;
Brodie, Daniel ;
Fan, Eddy ;
Torres, Antoni ;
Chiumello, Davide ;
Corley, Amanda ;
Elhazmi, Alyaa ;
Hodgson, Carol ;
Ichiba, Shingo ;
Luna, Carlos ;
Murthy, Srinivas ;
Nichol, Alistair ;
Ng, Pauline Yeung ;
Ogino, Mark ;
Pesenti, Antonio ;
Huynh Trung Trieu ;
Fraser, John F. .
CRITICAL CARE, 2021, 25 (01)
[6]   An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients [J].
Gianluigi Li Bassi ;
Jacky Y. Suen ;
Heidi J. Dalton ;
Nicole White ;
Sally Shrapnel ;
Jonathon P. Fanning ;
Benoit Liquet ;
Samuel Hinton ;
Aapeli Vuorinen ;
Gareth Booth ;
Jonathan E. Millar ;
Simon Forsyth ;
Mauro Panigada ;
John Laffey ;
Daniel Brodie ;
Eddy Fan ;
Antoni Torres ;
Davide Chiumello ;
Amanda Corley ;
Alyaa Elhazmi ;
Carol Hodgson ;
Shingo Ichiba ;
Carlos Luna ;
Srinivas Murthy ;
Alistair Nichol ;
Pauline Yeung Ng ;
Mark Ogino ;
Antonio Pesenti ;
Huynh Trung Trieu ;
John F. Fraser .
Critical Care, 25
[7]   A Technique for Monitoring Mechanically Ventilated Patient Lung Conditions [J].
Marx, Pieter ;
Marais, Henri .
DIAGNOSTICS, 2024, 14 (23)
[8]   Immediate Effects of Acapella (R) on Dynamic Lung Compliance in Mechanically Ventilated Patients with Acute Respiratory Distress Syndrome: A Case Series [J].
Sharma, Priya ;
Prem, V. ;
Jain, Sakshee .
INDIAN JOURNAL OF CRITICAL CARE MEDICINE, 2018, 22 (02) :100-102
[9]   Pulmonary compliance values provide prognosis in mechanically ventilated patients - A randomized prospective study [J].
Matic, Ivo ;
Pavicic, Fadila ;
Sakic-Zdravcevic, Katarina ;
Danic, Davorin ;
Jurjevic, Matija .
COLLEGIUM ANTROPOLOGICUM, 2007, 31 (03) :829-836
[10]   Advances in Machine Learning for Mechanically Ventilated Patients [J].
Xu, Yue ;
Xue, Jingjing ;
Deng, Yunfeng ;
Tu, Lili ;
Ding, Yu ;
Zhang, Yibing ;
Yuan, Xinrui ;
Xu, Kexin ;
Guo, Liangmei ;
Gao, Na .
INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2025, 18 :3301-3311