共 50 条
PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES
被引:17
|作者:
Jiang, Yu
[1
,2
]
Baoyin, Hexi
[2
]
机构:
[1] Xian Satellite Control Ctr, State Key Lab Astronaut Dynam, Xian 710043, Peoples R China
[2] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
基金:
美国国家科学基金会;
中国国家自然科学基金;
关键词:
celestial mechanics;
gravitation;
methods: numerical;
minor planets;
asteroids:;
general;
EQUILIBRIUM POINTS;
HAMILTONIAN-SYSTEMS;
COMET HALLEY;
MODEL;
POLYHEDRON;
ASTEROIDS;
DYNAMICS;
VICINITY;
ESCAPES;
MOTION;
D O I:
10.3847/0004-6256/152/5/137
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.
引用
收藏
页数:11
相关论文