Exact solution of the one-dimensional ballistic aggregation

被引:41
作者
Frachebourg, L [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys Theor, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1103/PhysRevLett.82.1502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An exact expression for the mass distribution rho(M; t) of the ballistic aggregation model in one dimension is derived in the long time regime. It is shown that it obeys scaling rho(M; t) = t(-4/3)F(M/t(2/3)) with a scaling function F(z) similar to z(-1/2) for z much less than 1 and F(z) similar to exp(-z(3)/12) for z much greater than 1. Applications of these results to Burgers turbulence are discussed. [S0031-9007(99)08466-5].
引用
收藏
页码:1502 / 1505
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   STATISTICAL PROPERTIES OF SHOCKS IN BURGERS TURBULENCE [J].
AVELLANEDA, M ;
WEINAN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :13-38
[3]   STATISTICS OF BALLISTIC AGGLOMERATION [J].
CARNEVALE, GF ;
POMEAU, Y ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2913-2916
[4]  
FRACHEBOURG L, IN PRESS
[5]   BROWNIAN-MOTION WITH A PARABOLIC DRIFT AND AIRY FUNCTIONS [J].
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 81 (01) :79-109
[6]   ASYMPTOTIC PROPERTIES OF BURGERS TURBULENCE [J].
KIDA, S .
JOURNAL OF FLUID MECHANICS, 1979, 93 (JUL) :337-377
[7]   ONE-DIMENSIONAL BALLISTIC AGGREGATION - RIGOROUS LONG-TIME ESTIMATES [J].
MARTIN, PA ;
PIASECKI, J .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :447-476
[8]   Aggregation dynamics in a self-gravitating one-dimensional gas [J].
Martin, PA ;
Piasecki, J .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) :837-857
[9]  
PIASECKI J, 1992, PHYSICA A, V190, P90
[10]   Turbulence without pressure [J].
Polyakov, AM .
PHYSICAL REVIEW E, 1995, 52 (06) :6183-6188