Ethanol conversion in a DC atmospheric pressure glow discharge

被引:9
|
作者
Arkhipenko, V. I. [1 ]
Kirillov, A. A. [1 ]
Simonchik, L. V. [1 ]
Kazak, A. V. [1 ]
Chemukho, A. P. [2 ]
Migoun, A. N. [2 ]
机构
[1] NAS Belarus, BI Stepanov Phys Inst, Pr Nezavisimosti 68, Minsk 220072, BELARUS
[2] Private R&D Enterprise Adv Res & Technol, Sovkhoznaya 1, Leskovka 223058, BELARUS
关键词
Atmospheric pressure glow; discharge; Ethanol; Conversion; Syngas; Experimental; Numerical; SPARK DISCHARGES; HYDROGEN; GASOLINE; NONEQUILIBRIUM; EFFICIENCY; SYSTEM; GAS; AIR;
D O I
10.1016/j.ijhydene.2016.08.122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conversion of ethanol-water mixture into syngas in a DC atmospheric pressure air glow discharge with a plasma cathode has been investigated experimentally and theoretically. The electric power of discharge was varied from 100 W up to 250 W. Novel diagnostics based on the absorption infrared spectroscopy was developed and used to determine the syngas composition and the conversion parameters. The main components of syngas were: hydrogen, carbon monoxide, methane, ethylene and acetylene. The achieved degree of conversion to hydrogen was about 90%, with hydrogen content in conversion products being equal to 40%. A method for numerical simulation of the conversion process has been developed under an assumption that the role of discharge in the conversion process is purely thermal in nature. The experimental and numerical data were found to be in a good agreement. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:18320 / 18328
页数:9
相关论文
共 50 条
  • [21] Decomposition of Ethanol in a Surface Wave Discharge at Atmospheric Pressure
    Jimenez, Margarita
    Rincon, Rocio
    Dolores Calzada, Maria
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2108 - 2109
  • [22] Comparison of deionized and tap water activated with an atmospheric pressure glow discharge
    Li, Xuechen
    Li, Xiaoni
    Gao, Kun
    Liu, Rui
    Liu, Renjing
    Yao, Xuerui
    Gong, Dandan
    Su, Zehua
    Jia, Pengying
    PHYSICS OF PLASMAS, 2019, 26 (03)
  • [23] Bactericidal characteristics and material conformity of atmospheric-pressure glow discharge
    Okawa, Hiroshi
    Akitsu, Tetsuya
    Plasma Medicine, 2014, 4 (1-4) : 37 - 47
  • [24] Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration
    Trenchev, G.
    Nikiforov, A.
    Wang, W.
    Kolev, St.
    Bogaerts, A.
    CHEMICAL ENGINEERING JOURNAL, 2019, 362 : 830 - 841
  • [25] Influence of the inter-electrode distance on the production of nanoparticles by means of atmospheric pressure inert gas dc glow discharge
    Hontanon, Esther
    Palomares, Jose Maria
    Guo, Xiaoai
    Engeln, Richard
    Nirschl, Hermann
    Kruis, Frank Einar
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (41)
  • [26] CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: A high conversion ability
    Li, Daihong
    Li, Xiang
    Bai, Meigui
    Tao, Xumei
    Shang, Shuyong
    Dai, Xiaoyan
    Yin, Yonyxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) : 308 - 313
  • [27] Non-equilibrium constricted dc glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes
    Akishev, Yu
    Grushin, M.
    Karalnik, V.
    Petryakov, A.
    Trushkin, N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (07)
  • [28] An Atmospheric-Pressure Glow-Discharge Plasma Jet and Its Application
    Li, Xiang
    Tao, Xumei
    Yin, Yongxiang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (06) : 759 - 763
  • [29] A new approach to the copper/epoxy joint using atmospheric pressure glow discharge
    Sawada, Y
    Ogawa, S
    Kogoma, M
    JOURNAL OF ADHESION, 1995, 53 (3-4) : 173 - 182
  • [30] Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
    Trushkin, A. N.
    Grushin, M. E.
    Kochetov, I. V.
    Trushkin, N. I.
    Akishev, Yu. S.
    PLASMA PHYSICS REPORTS, 2013, 39 (02) : 167 - 182