Direct measurement of quantum phases in graphene via photoemission spectroscopy

被引:69
作者
Hwang, Choongyu [1 ]
Park, Cheol-Hwan [2 ]
Siegel, David A. [1 ,2 ]
Fedorov, Alexei V. [3 ]
Louie, Steven G. [1 ,2 ]
Lanzara, Alessandra [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA
关键词
BERRY TOPOLOGICAL PHASE; RESOLVED PHOTOEMISSION; BAND-STRUCTURE; GRAPHITE; SYMMETRY; NEUTRON;
D O I
10.1103/PhysRevB.84.125422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum phases provide us with important information for understanding the fundamental properties of a system. However, the observation of quantum phases, such as Berry's phase and the sign of the matrix element of the Hamiltonian between two nonequivalent localized orbitals in a tight-binding formalism, has been challenged by the presence of other factors, e. g., dynamic phases and spin or valley degeneracy, and the absence of methodology. Here, we report a way to directly access these quantum phases, through polarization-dependent angle-resolved photoemission spectroscopy (ARPES), using graphene as a prototypical two-dimensional material. We show that the momentum-and polarization-dependent spectral intensity provides direct measurements of (i) the phase of the band wavefunction and (ii) the sign of matrix elements for nonequivalent orbitals. Upon rotating light polarization by pi/2, we found that graphene with a Berry's phase of n pi (n = 1 for single-and n = 2 for double-layer graphene for Bloch wavefunction in the commonly used form) exhibits the rotation of ARPES intensity by pi/n, and that ARPES signals reveal the signs of the matrix elements in both single- and double-layer graphene. The method provides a technique to directly extract fundamental quantum electronic information on a variety of materials.
引用
收藏
页数:10
相关论文
共 38 条
  • [1] SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY
    AHARONOV, Y
    BOHM, D
    [J]. PHYSICAL REVIEW, 1959, 115 (03): : 485 - 491
  • [2] Anomaly of optical phonons in bilayer graphene
    Ando, Tsuneya
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (10)
  • [3] MANIFESTATION OF BERRY TOPOLOGICAL PHASE IN NEUTRON SPIN ROTATION
    BITTER, T
    DUBBERS, D
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (03) : 251 - 254
  • [4] Bohm A., 2003, TEXT MONOGR
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Illuminating the dark corridor in graphene: Polarization dependence of angle-resolved photoemission spectroscopy on graphene
    Gierz, Isabella
    Henk, Juergen
    Hoechst, Hartmut
    Ast, Christian R.
    Kern, Klaus
    [J]. PHYSICAL REVIEW B, 2011, 83 (12):
  • [7] Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene
    Grueneis, A.
    Attaccalite, C.
    Wirtz, L.
    Shiozawa, H.
    Saito, R.
    Pichler, T.
    Rubio, A.
    [J]. PHYSICAL REVIEW B, 2008, 78 (20):
  • [8] Fermi surface and quasiparticle dynamics of Na0.7CoO2 investigated by angle-resolved photoemission spectroscopy -: art. no. 246402
    Hasan, MZ
    Chuang, YD
    Qian, D
    Li, YW
    Kong, Y
    Kuprin, A
    Fedorov, AV
    Kimmerling, R
    Rotenberg, E
    Rossnagel, K
    Hussain, Z
    Koh, H
    Rogado, NS
    Foo, ML
    Cava, RJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 246402 - 1
  • [9] Observation of Unconventional Quantum Spin Textures in Topological Insulators
    Hsieh, D.
    Xia, Y.
    Wray, L.
    Qian, D.
    Pal, A.
    Dil, J. H.
    Osterwalder, J.
    Meier, F.
    Bihlmayer, G.
    Kane, C. L.
    Hor, Y. S.
    Cava, R. J.
    Hasan, M. Z.
    [J]. SCIENCE, 2009, 323 (5916) : 919 - 922
  • [10] Coupling of nonlocal potentials to electromagnetic fields
    Ismail-Beigi, S
    Chang, EK
    Louie, SG
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (08) : 87402 - 1