Thermal Behavior of Portland Cement and Fly Ash-Metakaolin-Based Geopolymer Cement Pastes

被引:40
作者
Duan, Ping [1 ,2 ,3 ]
Yan, Chunjie [1 ,2 ,3 ]
Zhou, Wei [1 ,2 ]
Luo, Wenjun [1 ,2 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Minist Educ, Engn Res Ctr Nanogeomat, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Zhejiang Res Inst, Hangzhou 311305, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
Thermal properties; Cement; Geopolymer; Fly ash; Metakaolin; ELEVATED-TEMPERATURES; COMPRESSIVE STRENGTH; CONCRETE; FIRE; MORTARS;
D O I
10.1007/s13369-015-1748-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geopolymer specimens were prepared by combination of fly ash and metakaolin activated by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions. The effect of high temperature on the compressive strength, mass loss and shrinkage of geopolymer cement pastes and ordinary portland cement (OPC) pastes were assessed experimentally. Microstructure formation and development were characterized in terms of pore structure by mercury intrusion porosimetry. The results reveal that at temperatures exceeding 400 degrees C geopolymer cement paste is superior to OPC paste. Firstly, the compressive strength drops rapidly for the OPC paste to practically zero strength at 600 degrees C, while it drops slowly for the fly ash-metakaolin-based geopolymer cement paste to 46MPa at 1000 degrees C. Secondly, while the mass loss increases for the OPC paste, it is maintained at a constant, lower value for the geopolymer cement paste. Thirdly, shrinkage of geopolymer cement paste is at least three times smaller than that of OPC paste.
引用
收藏
页码:2261 / 2269
页数:9
相关论文
共 26 条
[1]   Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete [J].
Abdulkareem, Omar A. ;
Al Bakri, A. M. Mustafa ;
Kamarudin, H. ;
Nizar, I. Khairul ;
Saif, Ala'eddin A. .
CONSTRUCTION AND BUILDING MATERIALS, 2014, 50 :377-387
[2]   Effect of cure temperature on the formation of metakaolinite-based geopolymer [J].
Aredes, F. G. M. ;
Campos, T. M. B. ;
Machado, J. P. B. ;
Sakane, K. K. ;
Thim, G. P. ;
Brunelli, D. D. .
CERAMICS INTERNATIONAL, 2015, 41 (06) :7302-7311
[3]   Role of the silica source on the geopolymerization rate: A thermal analysis study [J].
Autef, A. ;
Joussein, E. ;
Gasgnier, G. ;
Rossignol, S. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2013, 366 :13-21
[4]  
Bui VK, 2002, ACI MATER J, V99, P549
[5]   Microcracking and strength development of alkali activated slag concrete [J].
Collins, F ;
Sanjayan, JG .
CEMENT & CONCRETE COMPOSITES, 2001, 23 (4-5) :345-352
[6]   Mercury porosimetry - An inappropriate method for the measurement of pore size distributions in cement-based materials [J].
Diamond, S .
CEMENT AND CONCRETE RESEARCH, 2000, 30 (10) :1517-1525
[7]  
DOUGLAS E, 1992, ACI MATER J, V89, P509
[8]   Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C [J].
Duxson, Peter ;
Lukey, Grant C. ;
van Deventer, Jannie S. J. .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (09) :3044-3054
[9]  
EN, 1998, EN 1015-6
[10]   Microstructure of fire-damaged concrete. A case study [J].
Georgali, B ;
Tsakiridis, PE .
CEMENT & CONCRETE COMPOSITES, 2005, 27 (02) :255-259