Application of the Electrochemical Permeation Method for Hydrogen Diffusion Coefficient Determination in Pipeline Steel 10G2

被引:0
作者
Borodin, Vladislav I. [1 ]
Lun-Fu, Aleksandr V. [1 ]
Kudiiarov, Victor N. [2 ]
Lider, Andrey M. [2 ]
Sakvin, Ivan S. [2 ]
Bubenchikov, Mikhail A. [1 ]
Kaparulin, Dmitry S. [3 ]
Ovchinnikov, Vyacheslav A. [4 ]
机构
[1] LLC Gazprom Transgaz Tomsk, 9 Frunze St, Tomsk 634029, Russia
[2] Natl Res Tomsk Polytech Univ, Div Expt Phys, Tomsk 634050, Russia
[3] Natl Res Tomsk State Univ, Dept Quantum Field Theory, 36 Lenin Ave, Tomsk 634050, Russia
[4] Natl Res Tomsk State Univ, Dept Phys & Computat Mech, 36 Lenin Ave, Tomsk 634050, Russia
关键词
pipeline steel; corrosion testing; electrochemical permeation method; hydrogen diffusion; diffusion coefficient; INDUCED CRACKING; PLASTIC STRAIN; SORPTION; STRESS;
D O I
10.3390/coatings11101260
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we conduct research on the effect of corrosion tests on the hydrogen diffusion process in gas steel in electrochemical permeability tests. This tests show that a long corrosion test time reduces the hydrogen diffusion coefficient by an order of magnitude, indicating the formation of aging defects in the steel. During operation, the diffusion coefficient decreases by two orders of magnitude, which also indicates the formation of a large number of defects in the steel. Consequently, based on the change in the diffusion coefficient in the material, it is possible to assess the degree of material failure.</p>
引用
收藏
页数:22
相关论文
共 31 条
[1]   Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines - An overview [J].
Alamri, Aeshah H. .
ENGINEERING FAILURE ANALYSIS, 2020, 116
[2]   Evaluation of hydrogen sorption and permeation parameters in liquid metal membranes via Sieverts' apparatus [J].
Deveau, Nicholas D. ;
Yen, Pei-Shan ;
Datta, Ravindra .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (41) :19075-19090
[3]   Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment [J].
Drexler, E. S. ;
Slifka, A. J. ;
Amaro, R. L. ;
Barbosa, N. ;
Lauria, D. S. ;
Hayden, L. E. ;
Stalheim, D. G. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (05) :517-525
[4]   Influence of the plastic strain on the hydrogen evolution reaction on polycrystalline nickel electrodes in H2SO4 [J].
El Alami, H. ;
Creus, J. ;
Feaugas, X. .
ELECTROCHIMICA ACTA, 2006, 51 (22) :4716-4727
[5]   Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J].
Gan, Lijun ;
Huang, Feng ;
Zhao, Xiaoyu ;
Liu, J. ;
Cheng, Y. Frank .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (04) :2293-2306
[6]  
Gareev A.G., 2012, OIL GAS BUS, V6, P126
[7]   Effects of Prior Cold Work on Hydrogen Trapping and Diffusion in API X-70 Line Pipe Steel During Electrochemical Charging [J].
Ha, Hung M. ;
Ai, Jia-He ;
Scully, John R. .
CORROSION, 2014, 70 (02) :166-184
[8]   Effects of Phosphate on Pit Stabilization and Propagation in Copper in Synthetic Potable Waters [J].
Ha, Hung M. ;
Scully, John R. .
CORROSION, 2013, 69 (07) :703-718
[9]   Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J].
Haq, Ayesha J. ;
Muzaka, K. ;
Dunne, D. P. ;
Calka, A. ;
Pereloma, E. V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) :2544-2556
[10]   Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J].
Huang, F. ;
Liu, J. ;
Deng, Z. J. ;
Cheng, J. H. ;
Lu, Z. H. ;
Li, X. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (26) :6997-7001