Prediction of Carbon Stock Available in Forest using Naive Bayes Approach

被引:2
作者
Walia, Navjot Kaur [1 ]
Kalra, Parul [1 ]
Mehrotra, Deepti [1 ]
机构
[1] Amity Univ Uttar Pradesh, ASET, Noida, UP, India
来源
2016 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT) | 2016年
关键词
Classification; Naive Bayesian Classifier; Carbon Stock; Above Ground Biomass; Below Ground Biomass; Litter; oil Organic Matter; Dead Wood;
D O I
10.1109/CICT.2016.61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Carbon plays an essential role in the environment for climate change. The presence and absence of carbon directly affects all living beings. Trees inhale carbon for giving us oxygen. The environmental study of carbon is a major concern these days. Carbon Dioxide is stored in different five carbon pools of forest. Many countries are innolved in the research of environmental factors these days. The focus of this paper is to build a system using Naive Bayes Approach that trains a model to classify forest on the basis of carbon stock and predict the level of carbon stock in the forest. The model is validated using dataset of the previous year data.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
[31]   Data Classification Using Rough Sets and Naive Bayes [J].
Al-Aidaroos, Khadija ;
Abu Bakar, Azuraliza ;
Othman, Zalinda .
ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 :134-142
[32]   USING INSTANCE CLONING TO IMPROVE NAIVE BAYES FOR RANKING [J].
Jiang, Liangxiao ;
Wang, Dianhong ;
Zhang, Harry ;
Cai, Zhihua ;
Huang, Bo .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2008, 22 (06) :1121-1140
[33]   The effects of environmental variability and forest management on natural forest carbon stock in northwestern Ethiopia [J].
Kassaye, Melkamu ;
Derebe, Yonas ;
Kibrie, Wondwossen ;
Debebe, Fikadu ;
Emiru, Etsegenet ;
Gedamu, Bahiru ;
Tamir, Mulugeta .
ECOLOGY AND EVOLUTION, 2024, 14 (06)
[34]   Necromass Carbon Stock in a Secondary Atlantic Forest Fragment in Brazil [J].
Villanova, Paulo Henrique ;
Miquelino Eleto Torres, Carlos Moreira ;
Goncalves Jacovine, Laercio Antonio ;
Boechat Soares, Carlos Pedro ;
da Silva, Liniker Fernandes ;
Said Schettini, Bruno Leao ;
Silva Soares da Rocha, Samuel Jose ;
Zanuncio, Jose Cola .
FORESTS, 2019, 10 (10)
[35]   Rock-Burst Occurrence Prediction Based on Optimized Naive Bayes Models [J].
Ke, Bo ;
Khandelwal, Manoj ;
Asteris, Panagiotis G. ;
Skentou, Athanasia D. ;
Mamou, Anna ;
Armaghani, Danial Jahed .
IEEE ACCESS, 2021, 9 :91347-91360
[36]   Analysis of Efficiency of Classification and Prediction Algorithms (Naive Bayes) for Breast Cancer Dataset [J].
Rashmi, G. D. ;
Lekha, A. ;
Bawane, Neelam .
2015 INTERNATIONAL CONFERENCE ON EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY (ICERECT), 2015, :108-113
[37]   A naive bayes approach for converging learning objects with open educational resources [J].
Sabitha, A. Sai ;
Mehrotra, Deepti ;
Bansal, Abhay ;
Sharma, B. K. .
EDUCATION AND INFORMATION TECHNOLOGIES, 2016, 21 (06) :1753-1767
[38]   Attribute weighted Naive Bayes classifier using a local optimization [J].
Sona Taheri ;
John Yearwood ;
Musa Mammadov ;
Sattar Seifollahi .
Neural Computing and Applications, 2014, 24 :995-1002
[39]   Attribute weighted Naive Bayes classifier using a local optimization [J].
Taheri, Sona ;
Yearwood, John ;
Mammadov, Musa ;
Seifollahi, Sattar .
NEURAL COMPUTING & APPLICATIONS, 2014, 24 (05) :995-1002
[40]   Classification of Diabetic Patients Records Using Naive Bayes Classifier [J].
Thulasi, K. S. ;
Ninu, E. S. ;
Kumar, Shiva K. M. .
2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, :1194-1198