Archaeal cells share common size control with bacteria despite noisier growth and division

被引:55
作者
Eun, Ye-Jin [1 ]
Ho, Po-Yi [2 ]
Kim, Minjeong [1 ]
LaRussa, Salvatore [5 ]
Robert, Lydia [6 ,7 ,8 ]
Renner, Lars D. [3 ,4 ]
Schmid, Amy [9 ]
Garner, Ethan [1 ]
Amir, Ariel [2 ]
机构
[1] Harvard Univ, Ctr Syst Biol, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Leibniz Inst Polymer Res Dresden, Dresden, Germany
[4] Max Bergmann Ctr Biomat, Dresden, Germany
[5] Masconomet Reg High Sch, Boxford, MA USA
[6] INRA, UMR Micalis 1319, Jouy En Josas, France
[7] AgroParisTech, UMR Micalis, Jouy En Josas, France
[8] UPMC, CNRS, Lab Jean Perrin, UMR 8237, Paris, France
[9] Duke Univ, Ctr Genom & Computat Biol, Dept Biol, Durham, NC USA
来源
NATURE MICROBIOLOGY | 2018年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
DNA-REPLICATION; HIGH-THROUGHPUT; HOMEOSTASIS; CYCLE; LOCALIZATION; SHAPE;
D O I
10.1038/s41564-017-0082-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In nature, microorganisms exhibit different volumes spanning six orders of magnitude(1). Despite their capability to create different sizes, a clonal population in a given environment maintains a uniform size across individual cells. Recent studies in eukaryotic and bacterial organisms showed that this homogeneity in cell size can be accomplished by growing a constant size between two cell cycle events (that is, the adder model(2-6)). Demonstration of the adder model led to the hypothesis that this phenomenon is a consequence of convergent evolution. Given that archaeal cells share characteristics with both bacteria and eukaryotes, we investigated whether and how archaeal cells exhibit control over cell size. To this end, we developed a soft-lithography method of growing the archaeal cells to enable quantitative time-lapse imaging and single-cell analysis, which would be useful for other microorganisms. Using this method, we demonstrated that Halobacterium salinarum, a hypersaline-adapted archaeal organism, grows exponentially at the single-cell level and maintains a narrow-ize distribution by adding a constant length between cell division events. Interestingly, the archaeal cells exhibited greater variability in cell division placement and exponential growth rate across individual cells in a population relative to those observed in Escherichia coli(6-9). Here, we present a theoretical framework that explains how these larger fluctuations in archaeal cell cycle events contribute to cell size variability and control.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 34 条
  • [1] Point of view: Is cell size a spandrel?
    Amir, Ariel
    [J]. ELIFE, 2017, 6
  • [2] Cell Size Regulation in Bacteria
    Amir, Ariel
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [3] Biphasic growth dynamics control cell division in Caulobacter crescentus
    Banerjee, Shiladitya
    Lo, Klevin
    Daddysman, Matthew K.
    Selewa, Alan
    Kuntz, Thomas
    Dinner, Aaron R.
    Scherer, Norbert F.
    [J]. NATURE MICROBIOLOGY, 2017, 2 (09):
  • [4] A Constant Size Extension Drives Bacterial Cell Size Homeostasis
    Campos, Manuel
    Surovtsev, Ivan V.
    Kato, Setsu
    Paintdakhi, Ahmad
    Beltran, Bruno
    Ebmeier, Sarah E.
    Jacobs-Wagner, Christine
    [J]. CELL, 2014, 159 (06) : 1433 - 1446
  • [5] Cell-Size Homeostasis and the Incremental Rule in a Bacterial Pathogen
    Deforet, Maxime
    van Ditmarsch, Dave
    Xavier, Joao B.
    [J]. BIOPHYSICAL JOURNAL, 2015, 109 (03) : 521 - 528
  • [6] CetZ tubulin-like proteins control archaeal cell shape
    Duggin, Iain G.
    Aylett, Christopher H. S.
    Walsh, James C.
    Michie, Katharine A.
    Wang, Qing
    Turnbull, Lynne
    Dawson, Emma M.
    Harry, Elizabeth J.
    Whitchurch, Cynthia B.
    Amos, Linda A.
    Loewe, Jan
    [J]. NATURE, 2015, 519 (7543) : 362 - +
  • [7] Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough
    Fievet, Anouchka
    Ducret, Adrien
    Mignot, Tam
    Valette, Odile
    Robert, Lydia
    Pardoux, Romain
    Dolla, Alain R.
    Aubert, Corinne
    [J]. FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [8] A mechanistic stochastic framework for regulating bacterial cell division
    Ghusinga, Khem Raj
    Vargas-Garcia, Cesar A.
    Singh, Abhyudai
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] Godin M, 2010, NAT METHODS, V7, P387, DOI [10.1038/NMETH.1452, 10.1038/nmeth.1452]
  • [10] PSICIC: Noise and Asymmetry in Bacterial Division Revealed by Computational Image Analysis at Sub-Pixel Resolution
    Guberman, Jonathan M.
    Fay, Allison
    Dworkin, Jonathan
    Wingreen, Ned S.
    Gitai, Zemer
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (11)