matrices of quadratic type;
products of matrices;
factorization of matrices;
D O I:
10.1016/S0024-3795(01)00277-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let p = (x - beta)(x - beta (-1)) epsilon K[x] where beta (2) not equal beta (-2) and let V be a finite-dimensional vector space over the field K. A linear mapping M : V --> V is called quadratic if p(M) = 0. We characterize products of two quadratic linear mappings. (C) 2001 Elsevier Science Inc. All rights reserved.
机构:
Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
Vietnam Natl Univ, Ho Chi Minh City, VietnamUniv Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
Bien, M. H.
Ramezan-Nassab, M.
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Dept Math, 50 Taleghani St, Tehran, Iran
Inst Res Fundamental Sci IPM, Sch Math, POB 19395 5746, Tehran, IranUniv Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
Ramezan-Nassab, M.
Truong, L. Q.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
Vietnam Natl Univ, Ho Chi Minh City, Vietnam
Ho Chi Minh City Univ Educ, Dept Math Informat, Ho Chi Minh City, VietnamUniv Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
机构:
Inst Super Engn Lisboa, Area Dept Matemat, Lisbon, Portugal
Univ Lisbon, Ctr Estruturas Lineares & Combinatorias, P-1699 Lisbon, PortugalInst Super Engn Lisboa, Area Dept Matemat, Lisbon, Portugal
Iglesias, Laura
Silva, Fernando C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Estruturas Lineares & Combinatorias, P-1699 Lisbon, Portugal
Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, PortugalInst Super Engn Lisboa, Area Dept Matemat, Lisbon, Portugal