Proof of the feasibility of a nanocell-based wide-range optical magnetometer

被引:21
作者
Klinger, Emmanuel [1 ,2 ]
Azizbekyan, Hrayr [1 ]
Sargsyan, Armen [1 ]
Leroy, Claude [2 ]
Sarkisyan, David [1 ]
Papoyan, Aram [1 ]
机构
[1] NAS Armenia, Inst Phys Res, Ashtarak 0203 2, Armenia
[2] Univ Bourgogne Franche Comte, UMR CNRS 6303, Lab Interdisciplinaire Carnot de Bourgogne, BP 47870, F-21078 Dijon, France
关键词
ATOMIC VAPOR; SPECTROSCOPY; STABILIZATION;
D O I
10.1364/AO.373949
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an experimental scheme performing scalar magnetometry based on the fitting of Rb D-2 line spectra recorded by derivative selective reflection spectroscopy from an optical nanometric-thick cell. To demonstrate its efficiency, the magnetometer is used to measure the inhomogeneous magnetic field produced by a permanent neodymium-iron-boron alloy ring magnet at different distances. The computational tasks are realized by relatively cheap electronic components: an Arduino Due board for external control of the laser and acquisition of spectra, and a Raspberry Pi computer for the fitting. The coefficient of variation of the measurements remains under 5% in the magnetic field range of 40-200 mT, limited only by the size of the oven and translation stage used in our experiment. The proposed scheme is expected to operate with high measurement precision also for stronger magnetic fields (>500 mT) in the hyperfine Paschen-Back regime, where the evolution of atomic transitions can be calculated with high accuracy. (C) 2020 Optical Society of America
引用
收藏
页码:2231 / 2237
页数:7
相关论文
共 35 条
[1]   Comparison of algorithmic and machine learning approaches for the automatic fitting of Gaussian peaks [J].
Abdel-Aal, RE .
NEURAL COMPUTING & APPLICATIONS, 2002, 11 (01) :17-29
[2]  
Adam Steck D., 2013, Rubidium 85 D Line Data
[3]   EXPERIMENTAL DETERMINATIONS OF HYPERFINE-STRUCTURE IN ALKALI ATOMS [J].
ARIMONDO, E ;
INGUSCIO, M ;
VIOLINO, P .
REVIEWS OF MODERN PHYSICS, 1977, 49 (01) :31-75
[4]   A room temperature 19-channel magnetic field mapping device for cardiac signals [J].
Bison, G. ;
Castagna, N. ;
Hofer, A. ;
Knowles, P. ;
Schenker, J. -L. ;
Kasprzak, M. ;
Saudan, H. ;
Weis, A. .
APPLIED PHYSICS LETTERS, 2009, 95 (17)
[5]   Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors [J].
Bolshakova, I. ;
Duran, I. ;
Holyaka, R. ;
Hristoforou, E. ;
Marusenkov, A. .
SENSOR LETTERS, 2007, 5 (01) :283-288
[6]   Resonant nonlinear magneto-optical effects in atoms [J].
Budker, D ;
Gawlik, W ;
Kimball, DF ;
Rochester, SM ;
Yashchuk, VV ;
Weis, A .
REVIEWS OF MODERN PHYSICS, 2002, 74 (04) :1153-1201
[7]  
Budker D., 2013, Optical Magnetometry
[8]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[9]   Sub-Doppler spectroscopy of cesium vapor layers with nanometric and micrometric thickness [J].
Cartaleva, Stefka ;
Saltiel, Solomon ;
Sargsyan, Armen ;
Sarkisyan, David ;
Slavov, Dimitar ;
Todorov, Petko ;
Vaseva, Kapka .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (11) :1999-2006
[10]  
Demtroder W., 2013, LASER SPECTROSCOPY B