Spectrum of the semi-relativistic Pauli-Fierz model II

被引:1
|
作者
Hidaka, Takeru [1 ]
Hiroshima, Fumio [1 ]
Sasaki, Itaru [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[2] Shinshu Univ, Dept Math, Matsumoto, Nagano 3908621, Japan
关键词
Ground state; Pauli-Fierz model; pull-through formula; quantum field theory; GROUND-STATES; EXISTENCE; ATOMS; PARTICLES; MOLECULES;
D O I
10.4171/JST/386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the ground state of the semi-relativistic Pauli-Fierz Hamiltonian H = vertical bar p A(x)vertical bar + H-f + V(x). Here A(x) denotes the quantized radiation field with an ultraviolet cutoff function and H-f the free field Hamiltonian with dispersion relation vertical bar k vertical bar. The Hamiltonian H describes the dynamics of a massless and semi-relativistic charged particle interacting with the quantized radiation field with an ultraviolet cutoff function. In 2016, the first two authors proved the existence of the ground state Phi(m) of the massive Hamiltonian H-m is proven. Here, the massive Hamiltonian Hm is defined by H with dispersion relation root k(2) + m(2) (m > 0). In this paper, the existence of the ground state of H is proven. To this aim, we estimate a singular and non-local pull-through formula and show the equicontinuity of {a(k)Phi(m)}(0<m< m0) with some m(0), where a(k) denotes the formal kernel of the annihilation operator. Showing the compactness of the set {Phi(m)}(0<m< m0), the existence of the ground state of H is shown.
引用
收藏
页码:1779 / 1830
页数:52
相关论文
共 50 条
  • [21] LARGE DEVIATION GENERATING FUNCTION FOR CURRENTS IN THE PAULI-FIERZ MODEL
    De Roeck, Wojciech
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (04) : 549 - 585
  • [22] SOME RIGOROUS RESULTS ON THE PAULI-FIERZ MODEL OF CLASSICAL ELECTRODYNAMICS
    BAMBUSI, D
    GALGANI, L
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1993, 58 (02): : 155 - 171
  • [23] On the ground state energy of the translation invariant Pauli-Fierz model
    Barbaroux, Jean-Marie
    Chen, Thomas
    Vougalter, Vitali
    Vugalter, Semjon
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (03) : 1057 - 1064
  • [24] PAULI-FIERZ MODEL WITH KATO-CLASS POTENTIALS AND EXPONENTIAL DECAYS
    Hidaka, Takeru
    Hiroshima, Fumio
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (10) : 1181 - 1208
  • [25] Pauli-Fierz Hamiltonians defined as quadratic forms
    Bruneau, L
    Derezinski, J
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 169 - 199
  • [26] Spectral Theory of Massless Pauli-Fierz Models
    V. Georgescu
    C. Gérard
    J.S. Møller
    Communications in Mathematical Physics, 2004, 249 : 29 - 78
  • [27] Spectral theory of massless Pauli-Fierz models
    Georgescu, V
    Gérard, C
    Moller, JS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (01) : 29 - 78
  • [28] On the Ultraviolet Limit of the Pauli-Fierz Hamiltonian in the Lieb-Loss Model
    Bach, Volker
    Hach, Alexander
    ANNALES HENRI POINCARE, 2022, 23 (06): : 2207 - 2245
  • [29] Functional integral representations of the Pauli-Fierz model with spin 1/2
    Hiroshima, Fumio
    Loerinczi, Jozsef
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2127 - 2185
  • [30] Rigorous dynamics and radiation theory for a Pauli-Fierz model in the ultraviolet limit
    Bertini, M
    Noja, D
    Posilicano, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)