Global minimization via piecewise-linear underestimation

被引:15
作者
Mangasarian, OL
Rosen, JB
Thompson, ME
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[4] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
global minimization; piecewise-linear underestimation; concave minimization; linear programming;
D O I
10.1007/s10898-004-5907-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a function on R-n with many multiple local minima we approximate it from below, via concave minimization, with a piecewise-linear convex function by using sample points from the given function. The piecewise-linear function is then minimized using a single linear program to obtain an approximation to the global minimum of the original function. Successive shrinking of the original search region to which this procedure is applied leads to fairly accurate estimates, within 0.57%, of the global minima of synthetic nonconvex piecewise-quadratic functions for which the global minima are known exactly.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 9 条
  • [1] [Anonymous], 1997, ACTA MATH VIETNAM
  • [2] DILL KA, 1997, IMA VOLUMES MATH ITS, V3, P1
  • [3] Piecewise-convex maximization problems: Algorithm and computational experiments
    Fortin, D
    Tsevendorj, I
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (01) : 61 - 77
  • [4] Frank M., 1956, Naval research logistics quarterly, V3, P95, DOI 10.1002/nav.3800030109
  • [5] NON-LINEAR PERTURBATION OF LINEAR PROGRAMS
    MANGASARIAN, OL
    MEYER, RR
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (06) : 745 - 752
  • [6] Mitchell JC, 2000, OPTIMIZATION COMPUTA, P191
  • [7] PHILLIPS AT, 2001, LOCAL GLOBAL OPTIMIZ, P1
  • [8] Rockafellar, 2015, CONVEX ANAL
  • [9] ROSEN JB, 2004, COMPUTATIONAL OPTIMI, V8