K-Homology classes of elliptic uniform pseudodifferential operators

被引:2
作者
Engel, Alexander [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词
Pseudodifferential operators; K-Homology; Index theory; FINITE PROPAGATION SPEED; CURVATURE; MANIFOLDS; INDEX;
D O I
10.1007/s10455-018-9614-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an elliptic uniform pseudodifferential operator over a manifold of bounded geometry defines a class in uniform K-homology, and that this class only depends on the principal symbol of the operator.
引用
收藏
页码:551 / 582
页数:32
相关论文
共 40 条
[21]  
Lawson H.B., 1989, Princeton Mathematical Series
[22]  
Mcintosh A, 2013, P AM MATH SOC, V141, P3515
[23]   Fredholm theory and finite section method for band-dominated operators [J].
Rabinovich, VS ;
Roch, S ;
Silbermann, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (04) :452-495
[24]  
ROE J, 1988, J DIFFER GEOM, V27, P87
[25]  
Roe J., 1996, CBMS REG C SER MATH, V90
[26]  
Seeley R. T., 1967, P S PURE MATH, V10, P288
[27]   INTEGRO-DIFFERENTIAL OPERATORS ON VECTOR BUNDLES [J].
SEELEY, RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :167-&
[28]  
SHUBIN MA, 1992, ASTERISQUE, P37
[29]   Uniform K-homology theory [J].
Spakula, Jan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (01) :88-121
[30]   FUNCTIONAL CALCULUS FOR ELLIPTIC PSEUDODIFFERENTIAL OPERATORS [J].
STRICHARTZ, RS .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (03) :711-+