Development of an Efficient Parameter Estimation Method for the Inference of Vohradsky's Neural Network Models of Genetic Networks

被引:0
作者
Kimura, Shuhei [1 ]
Sato, Masanao [2 ]
Okada-Hatakeyama, Mariko [3 ]
机构
[1] Tottori Univ, Grad Sch Engn, Tottori 680, Japan
[2] Natl Inst Nat Sci, Natl Inst Basic Biol, Okazaki Inst Integrat Biosci, Okazaki, Aichi 4448585, Japan
[3] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
来源
2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2013年
关键词
Genetic network; neural network model; least-squares method; S-SYSTEM MODELS; PARTICLE SWARM OPTIMIZATION; REGULATORY NETWORKS; TRANSCRIPTIONAL REGULATION; EXPRESSION PROFILES; ESCHERICHIA-COLI; REGRESSION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vohradsky has proposed a neural network model to describe biochemical networks. Based on this model, several researchers have proposed genetic network inference methods. When trying to analyze large-scale genetic networks, however, these methods must solve high-dimensional function optimization problems. In order to resolve the high-dimensionality in the estimation of the parameters of the Vohradsky's neural network model, this study proposes a new method. The proposed method estimates the parameters of the neural network model by solving two-dimensional function optimization problems. Although these two-dimensional problems are non-linear, their low-dimensionality would make the estimation of the model parameters easier. Finally, we confirm the effectiveness of the proposed method through numerical experiments.
引用
收藏
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2000, Computational Analysis of Biochemical Systems
[2]   Inference of gene networks from temporal gene expression profiles [J].
Bansal, M. ;
di Bernardo, D. .
IET SYSTEMS BIOLOGY, 2007, 1 (05) :306-312
[3]   Parameter estimation in biochemical systems models with alternating regression [J].
Chou, I-Chun ;
Martens, Harald ;
Voit, Eberhard O. .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2006, 3
[4]   Recent developments in parameter estimation and structure identification of biochemical and genomic systems [J].
Chou, I-Chun ;
Voit, Eberhard O. .
MATHEMATICAL BIOSCIENCES, 2009, 219 (02) :57-83
[5]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[6]   Genetic network inference: from co-expression clustering to reverse engineering [J].
D'haeseleer, P ;
Liang, SD ;
Somogyi, R .
BIOINFORMATICS, 2000, 16 (08) :707-726
[7]   A network biology approach to prostate cancer [J].
Ergun, Ayla ;
Lawrence, Carolyn A. ;
Kohanski, Michael A. ;
Brennan, Timothy A. ;
Collins, James J. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[8]   Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles [J].
Faith, Jeremiah J. ;
Hayete, Boris ;
Thaden, Joshua T. ;
Mogno, Ilaria ;
Wierzbowski, Jamey ;
Cottarel, Guillaume ;
Kasif, Simon ;
Collins, James J. ;
Gardner, Timothy S. .
PLOS BIOLOGY, 2007, 5 (01) :54-66
[9]   Inferring genetic networks and identifying compound mode of action via expression profiling [J].
Gardner, TS ;
di Bernardo, D ;
Lorenz, D ;
Collins, JJ .
SCIENCE, 2003, 301 (5629) :102-105
[10]   Parameter estimation using Simulated Annealing for S-system models of biochemical networks [J].
Gonzalez, Orland R. ;
Kueper, Christoph ;
Jung, Kirsten ;
Naval, Prospero C., Jr. ;
Mendoza, Eduardo .
BIOINFORMATICS, 2007, 23 (04) :480-486