A critical analysis of Rayleigh-Taylor growth rates

被引:139
作者
Glimm, J [1 ]
Grove, JW
Li, XL
Oh, W
Sharp, DH
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Ctr Data Intens Comp, Upton, NY 11793 USA
[3] Los Alamos Natl Lab, Div Appl Phys, Hydrodynam Methods Grp, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Div Theoret, Complex Syst Grp, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.2000.6590
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent simulations of Rayleigh-Taylor instability growth rates display considerable spread. We provide evidence that differences in numerical dissipation effects (mass diffusion and viscosity) due to algorithmic differences and differences in simulation duration are the dominant factors that produce such different results, Within the simulation size and durations explored here, we provide evidence that the principal discrepancies are due to numerical dispersion through comparison of simulations using different algorithms. We present new 3D front tracking simulations that show tentative agreement with the range of reported experimental values. We begin an exploration of new physical length scales that may characterize a transition to a new Rayleigh-Taylor mixing regime. (C) 2001 Academic Press.
引用
收藏
页码:652 / 677
页数:26
相关论文
共 51 条
[1]   SCALE-INVARIANT MIXING RATES OF HYDRODYNAMICALLY UNSTABLE INTERFACES [J].
ALON, U ;
HECHT, J ;
MUKAMEL, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2867-2870
[2]   SCALE-INVARIANT REGIME IN RAYLEIGH-TAYLOR BUBBLE-FRONT DYNAMICS [J].
ALON, U ;
SHVARTS, D ;
MUKAMEL, D .
PHYSICAL REVIEW E, 1993, 48 (02) :1008-1014
[3]  
[Anonymous], CONT MATH, DOI DOI 10.1090/conm/238/03544
[4]  
[Anonymous], 1996, LEVEL SET METHODS
[5]   HIGHER-ORDER GODUNOV METHODS FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION-LAWS [J].
BELL, JB ;
COLELLA, P ;
TRANGENSTEIN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (02) :362-397
[6]  
BLAIR A, 1959, MATH TABLES AIDS COM, V13, P145
[7]  
CHEN SY, 1999, COMMUNICATION
[8]   A RENORMALIZATION-GROUP SCALING ANALYSIS FOR COMPRESSIBLE 2-PHASE FLOW [J].
CHEN, YP ;
DENG, YF ;
GLIMM, J ;
LI, G ;
ZHANG, Q ;
SHARP, DH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (11) :2929-2937
[9]  
CHENG B, 2000, UNPUB P 7 INT C PHYS
[10]  
CHERN IL, 1986, J COMPUT PHYS, V62, P83, DOI 10.1016/0021-9991(86)90101-4