Carleman estimates for the non-stationary Lame system and the application to an inverse problem

被引:56
作者
Imanuvilov, OY
Yamamoto, M
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
关键词
Carleman estimate; Lam'e system; inverse problem;
D O I
10.1051/cocv:2004030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lame' system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lame' coefficients by a single measurement of solution over (0, T) x omega, where T > 0 is a sufficiently large time interval and a subdomain omega satisfies a non-trapping condition.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 52 条
[1]  
[Anonymous], 1972, MECH SOLIDS
[2]  
[Anonymous], 1993, APPL ANAL
[3]  
[Anonymous], 1997, J INVERSE ILL-POSE P
[4]  
[Anonymous], 1981, PSEUDO DIFFERENTIAL
[5]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[6]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[7]  
Bellassoued M, 2001, PROG NONLIN, V46, P15
[9]   Uniqueness and control for the Lame system [J].
Bellassoued, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (24) :561-592
[10]  
Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244