Well-Posedness and Stability Results for a Nonlinear Damped Porous-Elastic System with Infinite Memory and Distributed Delay Terms

被引:1
作者
Moumen, Abdelkader [1 ]
Ouchenane, Djamel [2 ]
Bouhali, Keltoum [3 ]
Altayeb, Yousif [4 ]
机构
[1] Univ Hail, Dept Math, Fac Sci, Hail 55425, Saudi Arabia
[2] Univ Laghouat, Lab Pure & Appl Math, Laghouat 03000, Algeria
[3] Univ 20 Aout 1955, Dept Math, Fac Sci, Skikda 21000, Algeria
[4] Qassim Univ, Dept Math, Coll Arts & Sci, Ar Rass 51921, Saudi Arabia
关键词
well-posedness; general decay; infinite memory; nonlinear damping; porous-elastic system; distributed delay term; TIME-VARYING DELAY; WAVE-EQUATION; DECAY; STABILIZATION;
D O I
10.3390/mca26040071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we consider an important problem from the application perspective in science and engineering, namely, one-dimensional porous-elastic systems with nonlinear damping, infinite memory and distributed delay terms. A new minimal conditions, placed on the nonlinear term and the relationship between the weights of the different damping mechanisms, are used to show the well-posedness of the solution using the semigroup theory. The solution energy has an explicit and optimal decay for the cases of equal and nonequal speeds of wave propagation.
引用
收藏
页数:25
相关论文
共 24 条
[11]   Porous elastic system with nonlinear damping and sources terms [J].
Freitas, Mirelson M. ;
Santos, M. L. ;
Langa, Jose A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) :2970-3051
[12]   Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources [J].
Hebhoub, Fahima ;
Zennir, Khaled ;
Miyasita, Tosiya ;
Biomy, Mohamed .
AIMS MATHEMATICS, 2021, 6 (01) :442-455
[13]  
Khochemane H., 2019, ANN U FERRARA, V65, P249, DOI [10.1007/s11565-019-00321-6, DOI 10.1007/S11565-019-00321-6]
[14]   Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory [J].
Khochemane, Houssem Eddine ;
Djebabla, Abdelhak ;
Zitouni, Salah ;
Bouzettouta, Lamine .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
[15]  
Nicaise S, 2008, DIFFER INTEGRAL EQU, V21, P935
[16]  
Ouchenane D., 2020, COMMUN OPTIM THEORY, V2020, P18, DOI [10.23952/cot.2020.18, DOI 10.23952/COT.2020.18]
[17]  
Ouchenane D., J APPL NONLINEAR DYN
[18]   On the decay of solutions for porous-elastic systems with history [J].
Pamplona, Paulo Xavier ;
Munoz Rivera, Jaime E. ;
Quintanilla, Ramon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :682-705
[19]   Slow decay for one-dimensional porous dissipation elasticity [J].
Quintanilla, R .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :487-491
[20]   Stability of Timoshenko systems with past history [J].
Rivera, Jaime E. Munoz ;
Sare, Hugo D. Fernandez .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :482-502