Uniform gradient estimates on manifolds with a boundary and applications

被引:2
作者
Cheng, Li-Juan [1 ]
Thalmaier, Anton [1 ]
Thompson, James [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, Campus Belval, L-4364 Esch Sur Alzette, Luxembourg
关键词
Elliptic operator; Gradient estimate; Ricci curvature; Uniform bounds; COMPACT MANIFOLDS; SPECTRAL CLUSTERS; INEQUALITY; NORM;
D O I
10.1007/s13324-018-0228-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the problem of obtaining uniform gradient estimates forDirichlet and Neumann heat semigroups on Riemannian manifolds with boundary. As applications, we obtain isoperimetric inequalities, using Ledoux's argument, and uniform quantitative gradient estimates, firstly for C2 b functions with boundary conditions and then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.
引用
收藏
页码:571 / 588
页数:18
相关论文
共 50 条
[31]   Gradient estimates for harmonic functions on regular domains in Riemannian manifolds [J].
Thalmaier, A ;
Wang, FY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (01) :109-124
[32]   ELLIPTIC GRADIENT ESTIMATES FOR DIFFUSION OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
Qian Bin .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) :1555-1560
[33]   Gradient Estimates for Nonlinear Reaction–Diffusion Equations on Riemannian Manifolds [J].
Yu-Zhao Wang ;
Xueming Wang .
Results in Mathematics, 2022, 77
[34]   Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds [J].
Xianfa Song ;
Lin Zhao .
Zeitschrift für angewandte Mathematik und Physik, 2010, 61 :655-662
[35]   Lower Bound Estimates of the First Eigenvalue for Boundary of Compact Manifolds [J].
Liu, Yiwei ;
Yang, Yihu .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025,
[36]   GRADIENT ESTIMATES AND LIOUVILLE THEOREMSFOR A CLASS OF ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS [J].
Wang, Youde ;
Zhang, Aiqi ;
Zhao, Hongxing .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, :840-867
[37]   LIOUVILLE THEOREM AND GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS [J].
Wang, Wen ;
Zhou, Hui ;
Zhang, Xinquan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[38]   Gradient Estimates for Nonlinear Reaction-Diffusion Equations on Riemannian Manifolds [J].
Wang, Yu-Zhao ;
Wang, Xueming .
RESULTS IN MATHEMATICS, 2022, 77 (01)
[39]   Gradient Estimates for the Nonlinear Parabolic Equation with Two Exponents on Riemannian Manifolds [J].
Hou, Songbo .
TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (06) :1439-1448
[40]   Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Wang, Feng-Yu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3653-3670