Uniform gradient estimates on manifolds with a boundary and applications

被引:2
|
作者
Cheng, Li-Juan [1 ]
Thalmaier, Anton [1 ]
Thompson, James [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, Campus Belval, L-4364 Esch Sur Alzette, Luxembourg
关键词
Elliptic operator; Gradient estimate; Ricci curvature; Uniform bounds; COMPACT MANIFOLDS; SPECTRAL CLUSTERS; INEQUALITY; NORM;
D O I
10.1007/s13324-018-0228-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the problem of obtaining uniform gradient estimates forDirichlet and Neumann heat semigroups on Riemannian manifolds with boundary. As applications, we obtain isoperimetric inequalities, using Ledoux's argument, and uniform quantitative gradient estimates, firstly for C2 b functions with boundary conditions and then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.
引用
收藏
页码:571 / 588
页数:18
相关论文
共 50 条