Adaptive formed dual-phase interface for highly durable lithium metal anode in lithium-air batteries

被引:43
作者
Liang, Wei [1 ]
Lian, Fang [1 ]
Meng, Nan [1 ]
Lu, Jianhao [1 ]
Ma, Laijun [1 ]
Zhao, Chen-Zi [2 ]
Zhang, Qiang [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-air battery; Lithium metal anode; Li metal protection; Polymer; Dual-phase solid electrolyte interphase; LONG-CYCLE-LIFE; PROTECTIVE LAYER; POLYMER ELECTROLYTES; DENDRITE-FREE; GROWTH; SALT; FILM;
D O I
10.1016/j.ensm.2020.03.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-air battery exhibits a promising prospect as energy conversion and storage devices due to its ultrahigh theoretical energy density. However, lithium metal as anode is hampered due to the intricate ambient electrochemical environment especially in the open and semi-open batteries. Herein a strategy that in situ fabricating dual-phase protective interface is proposed to improve the durability of lithium metal anode for Li-air battery. A thin film generates and contacts intimately on the surface via floating lithium foil on a silane mixed solution, then the inorganic particles Li-6(Si2O7) appear adaptively and embeds in the Si-O-Si polymer during the initial lithium plating/stripping process. The in-situ integration of inorganic particles and polymer matrix enable the interface to possess a dense morphology, high mechanical rigidity, high lithium ions conductivity and high interface energy, defending the attack of moisture and O-2(-) and furthermore keeping a homogeneous Li+ deposition even at high local current density. As a result, an outstanding improvement on the reversibility of Li-air battery is achieved with 180 cycles at a high current density of 1000 mA g(-1) and capacity control of 1000 mAh g(-1) in air atmosphere (O-2:N-2:H2O = 4:16:3).
引用
收藏
页码:350 / 356
页数:7
相关论文
共 43 条
[1]   A lithium-oxygen battery with a long cycle life in an air-like atmosphere [J].
Asadi, Mohammad ;
Sayahpour, Baharak ;
Abbasi, Pedram ;
Ngo, Anh T. ;
Karis, Klas ;
Jokisaari, Jacob R. ;
Liu, Cong ;
Narayanan, Badri ;
Gerard, Marc ;
Yasaei, Poya ;
Hu, Xuan ;
Mukherjee, Arijita ;
Lau, Kah Chun ;
Assary, Rajeev S. ;
Khalili-Araghi, Fatemeh ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
NATURE, 2018, 555 (7697) :502-+
[2]   A Critical Review on Functionalization of Air-Cathodes for Nonaqueous Li-O2 Batteries [J].
Balaish, Moran ;
Jung, Ji-Won ;
Kim, Il-Doo ;
Ein-Eli, Yair .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (18)
[3]   Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes [J].
Chen, Ke ;
Pathak, Rajesh ;
Gurung, Ashim ;
Adhamash, Ezaldeen A. ;
Bahrami, Behzad ;
He, Qingquan ;
Qiao, Hui ;
Smirnova, Alevtina L. ;
Wu, James J. ;
Qiao, Qiquan ;
Zhou, Yue .
ENERGY STORAGE MATERIALS, 2019, 18 :389-396
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[6]   Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes [J].
Deng, Kuirong ;
Han, Dongmei ;
Ren, Shan ;
Wang, Shuanjin ;
Xiao, Min ;
Meng, Yuezhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (21) :13113-13119
[7]   Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries [J].
Du, Peng ;
Lu, Jun ;
Lau, Kah Chun ;
Luo, Xiangyi ;
Bareno, Javier ;
Zhang, Xiaoyi ;
Ren, Yang ;
Zhang, Zhengcheng ;
Curtiss, Larry A. ;
Sun, Yang-Kook ;
Amine, Khalil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (15) :5572-5581
[8]   A flexible polymer-based Li-air battery using a reduced graphene oxide/Li composite anode [J].
Guo, Ziyang ;
Li, Jinli ;
Xia, Yuan ;
Chen, Chao ;
Wang, Fengmei ;
Tamirat, Andebet Gedamu ;
Wang, Yonggang ;
Xia, Yongyao ;
Wang, Lei ;
Feng, Shouhua .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) :6022-6032
[9]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[10]   Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Li-O2 Batteries [J].
Han, Jiuhui ;
Guo, Xianwei ;
Ito, Yoshikazu ;
Liu, Pan ;
Hojo, Daisuke ;
Aida, Tsutomu ;
Hirata, Akihiko ;
Fujita, Takeshi ;
Adschiri, Tadafumi ;
Zhou, Haoshen ;
Chen, Mingwei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)