A Non-Invasive Approach for Fetal Arrhythmia Detection and Classification from ECG Signals

被引:0
作者
Ganguly, Biswarup [1 ]
Das, Anirbed [2 ]
Ghosal, Avishek [2 ]
Das, Debanjan [2 ]
Chatterjee, Debanjan [2 ]
Rakshit, Debmalya [2 ]
Das, Epsita [2 ]
机构
[1] Jadavpur Univ, Elect Engn Dept, Kolkata, India
[2] MSIT, Elect Engn Dept, Kolkata, India
来源
PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2020) | 2020年
关键词
1D convolution; artificial neural network; feature extraction; intelligent system; signal processing; EXTRACTION;
D O I
10.1109/vlsidcs47293.2020.9179922
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to present an intelligent system for autonomous diagnosis of fetal arrhythmia based on fetal ECG recordings. The present scheme uses one dimensional (1D) convolution with a wavelet kernel to extract time domain features from subjects possessing normal fetal ECG and fetal arrhythmia ECG. Time- domain features obtained from the convoluted signals are fed to a trained artificial neural network (ANN) with gradient descent learning to identify and classify fetal ECG signals. The experimental evaluation of the proposed scheme has been tested with a six- channel fetal ECG signal, available in the NIFEADB database. An overall accuracy of 96% is obtained by evaluating standard performance metrics. The use of 1D convolution not only reduces the computational burden but also helps to specify the feature space to develop an intelligent system for portable embedded system applications.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 29 条
[1]   Use of the fractal dimension for the analysis of electroencephalographic time series [J].
Accardo A. ;
Affinito M. ;
Carrozzi M. ;
Bouquet F. .
Biological Cybernetics, 1997, 77 (5) :339-350
[2]   Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
APPLIED INTELLIGENCE, 2019, 49 (01) :16-27
[3]  
Altin C., 2016, European Journal of Interdisciplinary Studies, V3, P35, DOI DOI 10.26417/EJIS.V2I3.P35-44
[4]  
Apsana S, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), P1277, DOI 10.1109/ICICICT1.2017.8342753
[5]   Noninvasive fetal electrocardiography for the detection of fetal arrhythmias [J].
Behar, Joachim A. ;
Bonnemains, Laurent ;
Shulgin, Vyacheslav ;
Oster, Julien ;
Ostras, Oleksii ;
Lakhno, Igor .
PRENATAL DIAGNOSIS, 2019, 39 (03) :178-187
[6]   Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements [J].
Da Poian, Giulia ;
Rozell, Christopher J. ;
Bernardini, Riccardo ;
Rinaldo, Roberto ;
Clifford, Gari D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (06) :1349-1358
[7]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[8]  
Devika MG, 2016, INT CONF COMMUN SYST, P167, DOI 10.1109/CSN.2016.7824008
[9]  
Ganguly Biswarup, 2020, Computational Advancement in Communication Circuits and Systems. Proceedings of ICCACCS 2018. Lecture Notes in Electrical Engineering (LNEE 575), P139, DOI 10.1007/978-981-13-8687-9_13
[10]  
Ganguly B., 2019, P INT C COMP EL COMM, P1, DOI DOI 10.1109/ICCECE44727.2019.9001858