Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

被引:50
作者
Mihai, Cosmin [1 ]
Chrisler, William B. [2 ]
Xie, Yumei [1 ]
Hu, Dehong [1 ]
Szymanski, Craig J. [1 ]
Tolic, Ana [1 ]
Klein, Jessica A. [2 ]
Smith, Jordan N. [2 ]
Tarasevich, Barbara J. [3 ]
Orr, Galya [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[3] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
关键词
Airborne nanoparticles; air-liquid interface; endosomes; FluoZin-3; intracellular Zn2+; lysosomes; METAL-OXIDE NANOPARTICLES; SILVER NANOPARTICLES; IN-VITRO; CELLULAR UPTAKE; TOXICITY; CYTOTOXICITY; PARTICLES; TRAFFICKING; SOLUBILITY; MECHANISMS;
D O I
10.3109/17435390.2013.859319
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 54 条
[1]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[2]   Zinc coordination sphere in biochemical zinc sites [J].
Auld, DS .
BIOMETALS, 2001, 14 (3-4) :271-313
[3]   Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos [J].
Bar-Ilan, Ofek ;
Albrecht, Ralph M. ;
Fako, Valerie E. ;
Furgeson, Darin Y. .
SMALL, 2009, 5 (16) :1897-1910
[4]   In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity [J].
Buerki-Thurnherr, Tina ;
Xiao, Lisong ;
Diener, Liliane ;
Arslan, Osman ;
Hirsch, Cordula ;
Maeder-Althaus, Xenia ;
Grieder, Kathrin ;
Wampfler, Bruno ;
Mathur, Sanjay ;
Wick, Peter ;
Krug, Harald F. .
NANOTOXICOLOGY, 2013, 7 (04) :402-416
[5]   Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Thielbeer, Frank ;
Bradley, Mark ;
Megson, Ian L. ;
MacNee, William ;
Poland, Craig A. ;
Tran, C. Lang ;
Donaldson, Ken .
TOXICOLOGICAL SCIENCES, 2012, 126 (02) :469-477
[6]   Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Howie, Sarah E. M. ;
Scotton, Chris J. ;
Wallace, William A. H. ;
MacNee, William ;
Bradley, Mark ;
Megson, Ian L. ;
Donaldson, Ken .
PARTICLE AND FIBRE TOXICOLOGY, 2011, 8
[7]   Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Poland, Craig A. ;
Duschl, Albert ;
Oostingh, Gertie Janneke ;
MacNee, William ;
Bradley, Mark ;
Megson, Ian L. ;
Donaldson, Ken .
NANOTOXICOLOGY, 2012, 6 (01) :22-35
[8]   Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Poland, Craig A. ;
Howie, Sarah E. M. ;
MacNee, William ;
Bradley, Mark ;
Megson, Ian L. ;
Donaldson, Ken .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (12) :1699-1706
[9]   Mammalian zinc transport, trafficking, and signals [J].
Cousins, Robert J. ;
Liuzzi, Juan P. ;
Lichten, Louis A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (34) :24085-24089
[10]  
DEDUVE C, 1983, EUR J BIOCHEM, V137, P391, DOI 10.1111/j.1432-1033.1983.tb07841.x