Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic Eutrema salsugineum

被引:22
作者
Li, Chuanshun [1 ]
Qi, Yuting [1 ]
Zhao, Chuanzhi [1 ,2 ]
Wang, Xingjun [1 ,2 ]
Zhang, Quan [1 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Shandong Prov Key Lab Plant Stress Res, Jinan, Peoples R China
[2] Shandong Acad Agr Sci, Biotech Res Ctr, Shandong Prov Key Lab Crop Genet Improvement Ecol, Jinan, Peoples R China
关键词
Eutrema salsugineum; RNA-seq; salt shock; autophagy; lignin biosynthesis; peroxisome; sugar metabolism; transcription factor; ABIOTIC STRESS; OXIDATIVE STRESS; THELLUNGIELLA-HALOPHILA; GENE-EXPRESSION; BIOSYNTHETIC-PATHWAY; ARABIDOPSIS-THALIANA; PROTEIN AGGREGATION; ALPHA-OXIDATION; BETA-OXIDATION; TOLERANCE;
D O I
10.3389/fgene.2021.770742
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Eutrema salsugineum can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of Eutrema need to be further understood. Herein, the transcriptome profiling of Eutrema leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as CCoAOMT, C4H, CCR, CAD, POD, and C3 ' H in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for Eutrema responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including Vac8, Atg8, and Atg4, as well as DEGs enriched in the peroxisome pathway such as EsPEX7, EsCAT, and EsSOD2, were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including WRKY, AP2/ERF-ERF, NAC, bZIP, MYB, C2H2, and HSF was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that Eutrema encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic Eutrema and discovering new gene targets for the genetic improvement of crops.
引用
收藏
页数:21
相关论文
共 90 条
  • [1] Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis
    Ali, Muhammad Amjad
    Azeem, Farrukh
    Nawaz, Muhammad Amjad
    Acet, Tuba
    Abbas, Amjad
    Imran, Qari Muhammad
    Shah, Kausar Hussain
    Rehman, Hafiz Mamoon
    Chung, Gyuhwa
    Yang, Seung Hwan
    Bohlmann, Holger
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2018, 226 : 12 - 21
  • [2] Salt stress inhibits photosystems II and I in cyanobacteria
    Allakhverdiev, Suleyman I.
    Murata, Norio
    [J]. PHOTOSYNTHESIS RESEARCH, 2008, 98 (1-3) : 529 - 539
  • [4] Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
    Apel, K
    Hirt, H
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 : 373 - 399
  • [5] Proteomic Identification and Characterization of a Novel Peroxisomal Adenine Nucleotide Transporter Supplying ATP for Fatty Acid β-Oxidation in Soybean and Arabidopsis
    Arai, Yuko
    Hayashi, Makoto
    Nishimura, Mikio
    [J]. PLANT CELL, 2008, 20 (12) : 3227 - 3240
  • [6] Production and scavenging of reactive oxygen species in chloroplasts and their functions
    Asada, Kozi
    [J]. PLANT PHYSIOLOGY, 2006, 141 (02) : 391 - 396
  • [7] Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement
    Baillo, Elamin Hafiz
    Kimotho, Roy Njoroge
    Zhang, Zhengbin
    Xu, Ping
    [J]. GENES, 2019, 10 (10)
  • [8] Lignin biosynthesis
    Boerjan, W
    Ralph, J
    Baucher, M
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 : 519 - 546
  • [9] Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement
    Bressan, Ray
    Bohnert, Hans
    Zhu, Jian-Kang
    [J]. MOLECULAR PLANT, 2009, 2 (01) : 1 - 2
  • [10] Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell
    Chaves, M. M.
    Flexas, J.
    Pinheiro, C.
    [J]. ANNALS OF BOTANY, 2009, 103 (04) : 551 - 560