Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative

被引:6
作者
Baltaeva, U. [1 ,2 ]
Alikulov, Y. [3 ]
Baltaeva, I. I. [2 ]
Ashirova, A. [4 ]
机构
[1] Khorezm Mamun Acad, Markaz 1, Khiva 220900, Uzbekistan
[2] Urgench State Univ, Kh Alimdjan Str 14, Urgench 220100, Uzbekistan
[3] Tashkent Univ Informat Technol, Amir Temur Str 108, Tashkent 100200, Uzbekistan
[4] Tashkent Univ Informat Technol, Urganch Branch, Al Khorezmi Str 110, Urgench 220100, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2021年 / 12卷 / 04期
关键词
integro-differential equations; Caputo fractional derivative; loaded equation; nonlocal problem; Bessel function; PARABOLIC-HYPERBOLIC EQUATION; SPINODAL DECOMPOSITION; NONLOCAL PROBLEM; OPERATORS; SYSTEM; MODEL;
D O I
10.17586/2220-8054-2021-12-4-418-424
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we prove the unique solvability of an analogue problem Darboux for a loaded integro-differential equation with Caputo operator by method of integral equations. The problem is equivalently reduced to a system of integral equations, which is unconditionally and uniquely solvable.
引用
收藏
页码:418 / 424
页数:7
相关论文
共 26 条
[1]   Gellerstedt Type Problem for the Loaded Parabolic-Hyperbolic Type Equation with Caputo and Erdelyi-Kober Operators of Fractional Order [J].
Abdullaev, O. Kh. ;
Islomov, B. I. .
RUSSIAN MATHEMATICS, 2020, 64 (10) :29-42
[2]   Solvability of the boundary-value problem for a linear loaded integro-differential equation in an infinite three-dimensional domain [J].
Agarwal, Praveen ;
Baltaeva, Umida ;
Alikulov, Yolqin .
CHAOS SOLITONS & FRACTALS, 2020, 140
[3]   Model of spinodal decomposition of phases under hyperbolic diffusion [J].
Antonov, NM ;
Popov, IY ;
Gusarov, VV .
PHYSICS OF THE SOLID STATE, 1999, 41 (05) :824-826
[4]  
Ashyralyev A., 2017, ELECT J DIFFERENTIAL, V2017, P1
[5]  
Atangana A, 2016, Derivative with a new parameter: theory, methods and applications, P1
[6]   On the Solution of Linear and Nonlinear Fractional Integro-Differential Equations in Nano-Transistors [J].
Avaji, M. ;
Dehcheshmeh, S. S. ;
Hafshejani, J. S. ;
Ghahfarokhi, D. F. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (02) :510-513
[7]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[8]  
Baltaeva UI, 2017, NANOSYST-PHYS CHEM M, V8, P413, DOI [10.17586/2220-8054-2017-8-4-413-419, 10.17586/2220-8054-2017-8-4-413419]
[9]   Solvability of the analogs of the problem Tricomi for the mixed type loaded equations with parabolic-hyperbolic operators [J].
Baltaeva, Umida .
BOUNDARY VALUE PROBLEMS, 2014, :1-12
[10]  
Barretta Raffaele, 2020, ARXIV200909188V1PHYS