Biseparable extensions are not necessarily Frobenius

被引:0
作者
Gomez-Torrecillas, Jose [1 ]
Lobillo, F. J. [1 ,2 ]
Navarro, Gabriel [2 ,3 ]
Patricio Sanchez-Hernandez, Jose [1 ]
机构
[1] Univ Granada, Dept Algebra, Granada, Spain
[2] Univ Granada, CITIC, Granada, Spain
[3] Univ Granada, Dept Comp Sci & AI, Granada, Spain
关键词
Separable extension; Split extension; Frobenius extension; Biseparable extension; Ore polynomial ring;
D O I
10.1007/s00209-020-02523-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions on an Ore extension A[x; s, d], where A is a finite dimensional algebra over a field F, for being a Frobenius extension of the ring of commutative polynomials F[x]. As a consequence, as the title of this paper highlights, we provide a negative answer to a problem stated by Caenepeel and Kadison.
引用
收藏
页码:517 / 533
页数:17
相关论文
共 20 条
[1]   Are biseparable extensions Frobenius? [J].
Caenepeel, S ;
Kadison, L .
K-THEORY, 2001, 24 (04) :361-383
[2]  
Eilenberg S, 1955, NAGOYA MATH J, V9, P1, DOI [10.1017/S0027763000023229, DOI 10.1017/S0027763000023229]
[3]  
Endo Shizuo., 1967, OSAKA MATH J, V4, P233
[4]   Computing separability elements for the sentence-ambient algebra of split ideal codes [J].
Gomez-Torrecillas, Jose ;
Lobillo, F. J. ;
Navarro, Gabriel .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 83 :211-227
[5]   A New Perspective of Cyclicity in Convolutional Codes [J].
Gomez-Torrecillas, Jose ;
Lobillo, F. J. ;
Navarro, Gabriel .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (05) :2702-2706
[6]  
Goodearl K.R., 2004, An Introduction to Noncommutative Noetherian Rings, V2, P61, DOI [DOI 10.1017/CBO9780511841699, 10.1017/CBO9780511841699]
[7]   ON SEMISIMPLE EXTENSIONS AND SEPARABLE EXTENSIONS OVER NON COMMUTATIVE RINGS [J].
HIRATA, K ;
SUGANO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1966, 18 (04) :360-+
[8]   The Jones polynomial and certain separable frobenius extensions [J].
Kadison, L .
JOURNAL OF ALGEBRA, 1996, 186 (02) :461-475
[9]  
Kadison L., 1999, U LECT SERIES, V14
[10]   Separable equivalence of rings and symmetric algebras [J].
Kadison, Lars .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (02) :344-352