AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION

被引:3
作者
Duan, Junming [1 ,2 ]
Tang, Huazhong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, HEDPS, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi equation; ADER; Discontinuous Galerkin methods; Local continuous spacetime Galerkin predictor; High order accuracy; FINITE-ELEMENT-METHOD; HIGH-ORDER; VOLUME SCHEMES; WENO SCHEMES; IMPLEMENTATION; MESHES; SPEED;
D O I
10.4208/jcm.1902-m2018-0189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an efficient ADER (Arbitrary DERivatives in space and time) discontinuous Galerkin (DG) scheme to directly solve the Hamilton-Jacobi equation. Unlike multi-stage Runge-Kutta methods used in the Runge-Kutta DG (RKDG) schemes, the ADER scheme is one-stage in time discretization, which is desirable in many applications. The ADER scheme used here relies on a local continuous spacetime Galerkin predictor instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in space and time. In such predictor step, a local Cauchy problem in each cell is solved based on a weak formulation of the original equations in spacetime. The resulting spacetime representation of the numerical solution provides the temporal accuracy that matches the spatial accuracy of the underlying DG solution. The scheme is formulated in the modal space and the volume integral and the numerical fluxes at the cell interfaces can be explicitly written. The explicit formulae of the scheme at third order is provided on two-dimensional structured meshes. The computational complexity of the ADER-DG scheme is compared to that of the RKDG scheme. Numerical experiments are also provided to demonstrate the accuracy and efficiency of our scheme.
引用
收藏
页码:58 / 83
页数:26
相关论文
共 22 条
  • [1] Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods
    Balsara, Dinshaw S.
    Meyer, Chad
    Dumbser, Michael
    Du, Huijing
    Xu, Zhiliang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 934 - 969
  • [2] Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics
    Balsara, Dinshaw S.
    Rumpf, Tobias
    Dumbser, Michael
    Munz, Claus-Dieter
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) : 2480 - 2516
  • [3] A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations
    Cheng, Yingda
    Shu, Chi-Wang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 398 - 415
  • [4] A new discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations
    Cheng, Yingda
    Wang, Zixuan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 134 - 153
  • [5] Runge-Kutta discontinuous Galerkin methods for convection-dominated problems
    Cockburn, Bernardo
    Shu, Chi-Wang
    [J]. Journal of Scientific Computing, 2001, 16 (03) : 173 - 261
  • [6] CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
  • [7] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) : 1 - 42
  • [8] A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes
    Dumbser, Michael
    Balsara, Dinshaw S.
    Toro, Eleuterio F.
    Munz, Claus-Dieter
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (18) : 8209 - 8253
  • [9] Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws
    Dumbser, Michael
    Enaux, Cedric
    Toro, Eleuterio F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) : 3971 - 4001
  • [10] Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems
    Dumbser, Michael
    Kaeser, Martin
    Titarev, Vladimir A.
    Toro, Eleuterio F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 204 - 243