Optimal suppression of defect generation during a passage across a quantum critical point

被引:18
作者
Wu, Ning [1 ]
Nanduri, Arun [1 ]
Rabitz, Herschel [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
PHASE-TRANSITION; EVOLUTION; DYNAMICS;
D O I
10.1103/PhysRevB.91.041115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamics of quantum phase transitions are inevitably accompanied by the formation of defects when crossing a quantum critical point. For a generic class of quantum critical systems, we solve the problem of minimizing the production of defects through the use of a gradient-based deterministic optimal control algorithm. By considering a finite-size quantum Ising model with a tunable global transverse field, we show that an optimal power-law quench of the transverse field across the Ising critical point works well at minimizing the number of defects, in spite of being drawn from a subset of quench profiles. These power-law quenches are shown to be inherently robust against noise. The optimized defect density exhibits a transition at a critical ratio of the quench duration to the system size, which we argue coincides with the intrinsic speed limit for quantum evolution.
引用
收藏
页数:5
相关论文
共 45 条
[1]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[2]   Nonequilibrium dynamical mean-field theory and its applications [J].
Aoki, Hideo ;
Tsuji, Naoto ;
Eckstein, Martin ;
Kollar, Marcus ;
Oka, Takashi ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :779-837
[3]   Optimal nonlinear passage through a quantum critical point [J].
Barankov, Roman ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[4]  
Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
[5]   QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY [J].
BHATTACHARYYA, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :2993-2996
[6]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[7]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins [J].
Britton, Joseph W. ;
Sawyer, Brian C. ;
Keith, Adam C. ;
Wang, C. -C. Joseph ;
Freericks, James K. ;
Uys, Hermann ;
Biercuk, Michael J. ;
Bollinger, John J. .
NATURE, 2012, 484 (7395) :489-492
[9]  
Campbell S., ARXIV14101555
[10]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)