An amenable ascending union of non-amenable semigroups

被引:1
作者
Donnelly, John [1 ]
机构
[1] Mt Union Coll, Dept Math, Alliance, OH 44601 USA
关键词
amenability; semigroup;
D O I
10.1142/S0218196707003524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an example of a right amenable semigroup which is the ascending union of semigroups, none of which are right amenable.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
[21]   ON φ-INNER AMENABLE BANACH ALGEBRAS [J].
Jabbari, A. ;
Abad, T. Mehdi ;
Abadi, M. Zaman .
COLLOQUIUM MATHEMATICUM, 2011, 122 (01) :1-10
[22]   γ-Bounded representations of amenable groups [J].
Le Merdy, Christian .
ADVANCES IN MATHEMATICS, 2010, 224 (04) :1641-1671
[23]   φ-AMENABLE AND φ-BIFLAT BANACH ALGEBRAS [J].
Ghorbani, Z. ;
Bami, M. Lashkarizadeh .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (03) :507-515
[24]   THE THOMPSON GROUP F IS AMENABLE [J].
Shavgulidze, E. T. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (02) :173-191
[25]   Leptin Densities in Amenable Groups [J].
Pogorzelski, Felix ;
Richard, Christoph ;
Strungaru, Nicolae .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
[26]   Amenable discrete quantum groups [J].
Tomatsu, Reiji .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) :949-964
[27]   B(lp) IS NEVER AMENABLE [J].
Runde, Volker .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (04) :1175-1185
[28]   φ- BIPROJECTIVE AND (φ,ψ)- AMENABLE BANACH ALGEBRAS [J].
Ghorbani, Z. ;
Baradaran, J. .
MATHEMATICA MONTISNIGRI, 2019, 44 :5-14
[29]   AN ERGODIC PROPERTY OF AMENABLE HYPERGROUPS [J].
Pavel, Liliana .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01) :123-129
[30]   Leptin Densities in Amenable Groups [J].
Felix Pogorzelski ;
Christoph Richard ;
Nicolae Strungaru .
Journal of Fourier Analysis and Applications, 2022, 28