On Radial and Conical Fourier Multipliers

被引:10
作者
Heo, Yaryong [1 ]
Nazarov, Fedor [1 ]
Seeger, Andreas [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Radial Fourier multipliers; Cone multiplier; Weak type estimates; CONE MULTIPLIERS; OPERATORS; SPACES; BOUNDS;
D O I
10.1007/s12220-010-9171-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate connections between radial Fourier multipliers on R(d) and certain conical Fourier multipliers on R(d+1). As an application we obtain a new weak type endpoint bound for the Bochner-Riesz multipliers associated with the light cone in R(d+1), where d >= 4, and results on characterizations of L(p) -> L(p,nu) inequalities for convolutions with radial kernels.
引用
收藏
页码:96 / 117
页数:22
相关论文
共 19 条
[1]  
[Anonymous], 1983, MONOGRAPHS MATH
[2]   A CONTINUOUS VERSION OF DUALITY OF H-1 WITH BMO ON THE BIDISC [J].
CHANG, SYA ;
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1980, 112 (01) :179-201
[3]   WEAK TYPE (1, 1) BOUNDS FOR ROUGH OPERATORS [J].
CHRIST, M .
ANNALS OF MATHEMATICS, 1988, 128 (01) :19-42
[4]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[5]  
GARRIGOS G, IMPROVEMENTS WOLFF I
[6]  
GARRIGOS G, 2009, P EDINBURGH MATH SOC, V52, P1
[7]   Characterizations of Hankel multipliers [J].
Garrigos, Gustavo ;
Seeger, Andreas .
MATHEMATISCHE ANNALEN, 2008, 342 (01) :31-68
[8]  
HEO Y, ACTA MATH IN PRESS
[9]   AN ENDPOINT ESTIMATE FOR THE CONE MULTIPLIER [J].
Heo, Yaryong ;
Hong, Sunggeum ;
Yang, Chan Woo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1333-1347
[10]   Improved Bounds for High Dimensional Cone Multipliers [J].
Heo, Yaryong .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1187-1202