Uniqueness of Real Lagrangians up to Cobordism

被引:2
|
作者
Kim, Joontae [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
关键词
TORI; SURFACES; SPHERES;
D O I
10.1093/imrn/rnz345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a real Lagrangian submanifold in a closed symplectic manifold is unique up to cobordism. We then discuss the classification of real Lagrangians in CP2 and S-2 x S-2. In particular, we show that a real Lagrangian in CP2 is unique up to Hamiltonian isotopy and that a real Lagrangian in S-2 x S-2 is either Hamiltonian isotopic to the antidiagonal sphere or Lagrangian isotopic to the Clifford torus.
引用
收藏
页码:6184 / 6199
页数:16
相关论文
共 3 条
  • [1] On the Topology of Real Lagrangians in Toric Symplectic Manifolds
    Brendel, Joe
    Kim, Joontae
    Moon, Jiyeon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 113 - 156
  • [2] Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data
    Bartolucci, Daniele
    Jevnikar, Aleks
    Lee, Youngae
    Yang, Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 2057 - 2090
  • [3] Atomic structure of nanodiamond and its evolution upon annealing up to 1200 °C: Real space neutron diffraction analysis supported by MD simulations
    Stelmakh, Svitlana
    Skrobas, Kazimierz
    Gierlotka, Stanislaw
    Palosz, Bogdan
    DIAMOND AND RELATED MATERIALS, 2019, 93 : 139 - 149