Numerical solution of sine-Gordon equation by variational iteration method

被引:68
作者
Batiha, B. [1 ]
Noorani, M. S. M. [1 ]
Hashim, I. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Natl Univ Malaysia, Sch Math Sci, Bangi 43600, Malaysia
关键词
variational iteration method; Sine-Gordon equation;
D O I
10.1016/j.physleta.2007.05.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, variational iteration method (VIM) is applied to obtain approximate analytical solution of the sine-Gordon equation without any discretization. Comparisons with the exact solutions reveal that VIM is very effective and convenient. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 440
页数:4
相关论文
共 34 条
[31]   The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations [J].
Wazwaz, Abdul-Majid .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :18-23
[32]   The tanh method and a variable separated ODE method for solving double sine-Gordon equation [J].
Wazwaz, AM .
PHYSICS LETTERS A, 2006, 350 (5-6) :367-370
[33]   Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations [J].
Wazwaz, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (01) :127-135
[34]   The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations [J].
Wazwaz, AM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) :1196-1210