Numerical solution of sine-Gordon equation by variational iteration method

被引:68
作者
Batiha, B. [1 ]
Noorani, M. S. M. [1 ]
Hashim, I. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Natl Univ Malaysia, Sch Math Sci, Bangi 43600, Malaysia
关键词
variational iteration method; Sine-Gordon equation;
D O I
10.1016/j.physleta.2007.05.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, variational iteration method (VIM) is applied to obtain approximate analytical solution of the sine-Gordon equation without any discretization. Comparisons with the exact solutions reveal that VIM is very effective and convenient. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 440
页数:4
相关论文
共 34 条
[1]   Toward a modified variational iteration method [J].
Abassy, Tamer A. ;
El-Tawil, Magdy A. ;
El Zoheiry, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :137-147
[2]   A new application of He's variational iteration method for quadratic Riccati differential equation by using Adomian's polynomials [J].
Abbasbandy, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :59-63
[3]   On the numerical solution of the sine-Gordon equation .1. Integrable discretizations and homoclinic manifolds [J].
Ablowitz, MJ ;
Herbst, BM ;
Schober, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :299-314
[4]   The solution of nonlinear coagulation problem with mass loss [J].
Abulwafa, EM ;
Abdou, MA ;
Mahmoud, AA .
CHAOS SOLITONS & FRACTALS, 2006, 29 (02) :313-330
[5]  
[Anonymous], 1997, Comm. Nonlinear Sci. Numer. Simul.
[6]  
[Anonymous], 1998, COMMUN NONLINEAR SCI, DOI DOI 10.1016/S1007-5704(98)90046-6
[7]   Application of variational iteration method to the generalized Burgers-Huxley equation [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (03) :660-663
[8]   Numerical simulation of the generalized Huxley equation by He's variational iteration method [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1322-1325
[9]  
Bildik N, 2006, INT J NONLIN SCI NUM, V7, P65
[10]  
DEEBA EY, J COMPUT PHYS, V124