Classifying Force Spectroscopy of DNA Pulling Measurements Using Supervised and Unsupervised Machine Learning Methods

被引:6
|
作者
Karatay, Durmus U. [1 ]
Zhang, Jie [1 ]
Harrison, Jeffrey S. [1 ]
Ginger, David S. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
RANDOM FOREST; VALIDATION;
D O I
10.1021/acs.jcim.5b00722
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Dynamic force spectroscopy (DFS) measurements on biomolecules typically require classifying thousands of repeated force spectra prior to data analysis. Here, we study classification of atomic force microscope-based DFS measurements using machine-learning algorithms in order to automate selection of successful force curves. Notably, we collect a data set that has a testable positive signal using photoswitch-modified DNA before and after illumination with UV (365 nm) light. We generate a feature set consisting of six properties of force distance curves to train supervised models and use principal component analysis (PCA) for an unsupervised model. For supervised classification, we train random forest models for binary and multiclass classification of force distance curves. Random forest models predict successful pulls with an accuracy of 94% and classify them into five classes with an accuracy of 90%. The unsupervised method using Gaussian mixture models (GMM) reaches an accuracy of approximately 80% for binary classification.
引用
收藏
页码:621 / 629
页数:9
相关论文
共 50 条
  • [1] Classification of lidar measurements using supervised and unsupervised machine learning methods
    Farhani, Ghazal
    Sica, Robert J.
    Daley, Mark Joseph
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (01) : 391 - 402
  • [2] Classifying vertical facial deformity using supervised and unsupervised learning
    Hammond, P
    Hutton, TJ
    Nelson-Moon, ZL
    Hunt, NP
    Madgwick, AJA
    METHODS OF INFORMATION IN MEDICINE, 2001, 40 (05) : 365 - 372
  • [3] Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods
    Vakharia, V.
    Gupta, V. K.
    Kankar, P. K.
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2015, 20 (04): : 244 - 250
  • [4] Classifying the clouds of Venus using unsupervised machine learning
    Mittendorf, J.
    Molaverdikhani, K.
    Ercolano, B.
    Giovagnoli, A.
    Grassi, T.
    ASTRONOMY AND COMPUTING, 2024, 49
  • [5] Classifying Interplanetary Discontinuities Using Supervised Machine Learning
    Dumitru, Daniel
    Munteanu, Costel
    EARTH AND SPACE SCIENCE, 2023, 10 (07)
  • [6] Automation of submicron resolution x-ray spectroscopy measurements and analysis using supervised and unsupervised machine learning algorithms
    Coles, Rebecca A.
    Bowerman, Biays
    Schoonen, Martin
    Thieme, Juergen
    Duffin, Andrew M.
    APPLICATIONS OF MACHINE LEARNING 2022, 2022, 12227
  • [7] Assessment of the regeneration of landslides areas using unsupervised and supervised methods and explainable machine learning models
    Arrogante-Funes, Patricia
    Bruzon, Adrian G.
    Alvarez-Ripado, Ariadna
    Arrogante-Funes, Fatima
    Martin-Gonzalez, Fidel
    Novillo, Carlos J.
    LANDSLIDES, 2024, 21 (02) : 275 - 290
  • [8] Assessment of the regeneration of landslides areas using unsupervised and supervised methods and explainable machine learning models
    Patricia Arrogante-Funes
    Adrián G. Bruzón
    Ariadna Álvarez-Ripado
    Fátima Arrogante-Funes
    Fidel Martín-González
    Carlos J. Novillo
    Landslides, 2024, 21 (2) : 275 - 290
  • [9] Detecting insurance fraud using supervised and unsupervised machine learning
    Debener, Joern
    Heinke, Volker
    Kriebel, Johannes
    JOURNAL OF RISK AND INSURANCE, 2023, 90 (03) : 743 - 768
  • [10] Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening
    Omta, Wienand A.
    van Heesbeen, Roy G.
    Shen, Ian
    de Nobel, Jacob
    Robers, Desmond
    van Der Velden, Lieke M.
    Medema, Rene H.
    Siebes, Arno P. J. M.
    Feelders, Ad J.
    Brinkkemper, Sjaak
    Klumpermanl, Judith S.
    Spruit, Marco Rene
    Brinkhuis, Matthieu J. S.
    Egan, David A.
    SLAS DISCOVERY, 2020, 25 (06) : 655 - 664