Potential of Multi-Temporal ALOS-2 PALSAR-2 ScanSAR Data for Vegetation Height Estimation in Tropical Forests of Mexico

被引:16
|
作者
Urbazaev, Mikhail [1 ,2 ]
Cremer, Felix [2 ]
Migliavacca, Mirco [3 ]
Reichstein, Markus [3 ,4 ]
Schmullius, Christiane [2 ]
Thiel, Christian [2 ]
机构
[1] Max Planck Inst Biogeochem, Int Max Planck Res Sch Global Biogeochem Cycles, Hans Knoell Str 10, D-07745 Jena, Germany
[2] Friedrich Schiller Univ Jena, Dept Earth Observat, Loebdergraben 32, D-07743 Jena, Germany
[3] Max Planck Inst Biogeochem, Dept Biogeochem Integrat, Hans Knoell Str 10, D-07745 Jena, Germany
[4] Michael Stifel Ctr Jena, D-07743 Jena, Germany
关键词
L-band; SAR backscatter; vegetation height; forest structure parameters; spatial autocorrelation; Yucatan; Mexico; GROWING STOCK VOLUME; ABOVEGROUND BIOMASS; BOREAL FOREST; AIRBORNE LIDAR; CANOPY HEIGHT; CARBON STOCKS; AFRICAN SAVANNAS; SAR; RADAR; COVER;
D O I
10.3390/rs10081277
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information on the spatial distribution of forest structure parameters (e.g., aboveground biomass, vegetation height) are crucial for assessing terrestrial carbon stocks and emissions. In this study, we sought to assess the potential and merit of multi-temporal dual-polarised L-band observations for vegetation height estimation in tropical deciduous and evergreen forests of Mexico. We estimated vegetation height using dual-polarised L-band observations and a machine learning approach. We used airborne LiDAR-based vegetation height for model training and for result validation. We split LiDAR-based vegetation height into training and test data using two different approaches, i.e., considering and ignoring spatial autocorrelation between training and test data. Our results indicate that ignoring spatial autocorrelation leads to an overoptimistic model's predictive performance. Accordingly, a spatial splitting of the reference data should be preferred in order to provide realistic retrieval accuracies. Moreover, the model's predictive performance increases with an increasing number of spatial predictors and training samples, but saturates at a specific level (i.e., at 12 dual-polarised L-band backscatter measurements and at around 20% of all training samples). In consideration of spatial autocorrelation between training and test data, we determined an optimal number of L-band observations and training samples as a trade-off between retrieval accuracy and data collection effort. In summary, our study demonstrates the merit of multi-temporal ScanSAR L-band observations for estimation of vegetation height at a larger scale and provides a workflow for robust predictions of this parameter.
引用
收藏
页数:19
相关论文
共 48 条
  • [1] Investigating the capabilities of new microwave ALOS-2/PALSAR-2 data for biomass estimation
    Anh, L., V
    Paull, D. J.
    Griffin, A. L.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VII, 2016, 10005
  • [2] Refined algorithm for forest early warning system with ALOS-2/PALSAR-2 ScanSAR data in tropical forest regions
    Watanabe, Manabu
    Koyama, Christian N.
    Hayashi, Masato
    Nagatani, Izumi
    Tadono, Takeo
    Shimada, Masanobu
    REMOTE SENSING OF ENVIRONMENT, 2021, 265
  • [3] Estimation of Above-Ground Biomass over Boreal Forests in Siberia Using Updated In Situ, ALOS-2 PALSAR-2, and RADARSAT-2 Data
    Stelmaszczuk-Gorska, Martyna A.
    Urbazaev, Mikhail
    Schmullius, Christiane
    Thiel, Christian
    REMOTE SENSING, 2018, 10 (10)
  • [4] Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry
    Park, Seo-Woo
    Jung, Seong-Woo
    Hong, Sang-Hoon
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (02) : 351 - 363
  • [5] MAPPING SPATIAL-TEMPORAL FOREST HETEROGENEITY IN THE TROPICAL BELT BY ALOS-2/PALSAR-2 BIG DATA ANALYSIS
    Koyama, Christian N.
    Watanabe, Manabu
    Shimada, Masanobu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5336 - 5339
  • [6] ALOS-2 PALSAR-2 ScanSAR and Sentinel-1 data for timely tropical forest disturbance mapping: A case study for Sumatra, Indonesia
    Balling, Johannes
    Slagter, Bart
    van der Woude, Sietse
    Herold, Martin
    Reiche, Johannes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [7] Land-cover classification in the Bananal island region using PALSAR-2/ALOS-2 multi-temporal images
    Marques, Jorge Bohrer
    de Carvalho Junior, Osmar Abilio
    Campagnoli, Fernando
    de Mesquita Junior, Humberto Navarro
    Trancoso Gomes, Roberto Arnaldo
    Guimaraes, Renato Fontes
    CONFINS-REVUE FRANCO-BRESILIENNE DE GEOGRAPHIE-REVISTA FRANCO-BRASILEIRA DE GEOGRAFIA, 2019, 39
  • [8] ESTIMATION OF FOREST STEM VOLUME USING ALOS-2 PALSAR-2 SATELLITE IMAGES
    Fransson, Johan E. S.
    Santoro, Maurizio
    Wallerman, Jorgen
    Persson, Henrik J.
    Monteith, Albert R.
    Eriksson, Leif E. B.
    Nilsson, Mats
    Olsson, Hakan
    Soja, Maciej J.
    Ulander, Lars M. H.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5327 - 5330
  • [9] BARE LAND SOIL MOISTURE ESTIMATION USING ALOS-2 PALSAR-2
    Park, Haemi
    Tadono, Takeo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4449 - 4452
  • [10] Polarimetric Measures in Biomass Change Prediction Using ALOS-2 PALSAR-2 Data
    Persson, Henrik J.
    Huuva, Ivan
    REMOTE SENSING, 2024, 16 (06)