Influence of Module Architecture and Humidity on Local Module Degradation

被引:0
作者
Kumar, Rishi E. [1 ]
von Gastrow, Guillaume [1 ]
Theut, Nicholas [2 ]
Jeffries, April M. [2 ]
Sidawi, Tala [1 ]
Ha, Angel [1 ]
DePlachett, Flavia [1 ]
Moctezuma-Andraca, Hugo [1 ]
Donaldson, Seth [1 ]
Bertoni, Mariana, I [2 ]
Fenning, David P. [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Arizona State Univ, Tempe, AZ 85281 USA
来源
2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2021年
关键词
Silicon; Moisture; Durability; Degradation; SOLAR-CELL PARAMETERS;
D O I
10.1109/PVSC43889.2021.9518508
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Moisture ingress is an established issue for photovoltaic module durability. Durability studies probing moisture effects typically evaluate performance losses at the module level, attributing global power losses to the overall humidity condition of the test environment while leaving local module behavior unknown. We leverage our recently published optical moisture quantification method (water reflectometry detection, WaRD) and biased photoluminescence imaging to spatially correlate module moisture content and cell performance over the course of accelerated damp heat tests. These tests, carried out on glass-glass and glass-backsheet module packages at various temperatures and humidities, reveal two dominant modes of local cell performance loss - acute finger interruptions and global series resistance (R-s) increase. We show that acute failures are more prevalent in glass-glass packages and not influenced by local module moisture dose, and that background R-s increase is greatest in glass-backsheet packages at higher humidity conditions.
引用
收藏
页码:1576 / 1578
页数:3
相关论文
共 10 条
  • [1] Bogdanski N, 2011, 2011 37 IEEE PHOT SP
  • [2] Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input
    Bosco, Nick
    Springer, Martin
    He, Xin
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (05): : 1424 - 1440
  • [3] Jeffries AM, 2018, WORL CON PHOTOVOLT E, P1013, DOI 10.1109/PVSC.2018.8548247
  • [4] Photovoltaic Degradation Rates-an Analytical Review
    Jordan, D. C.
    Kurtz, S. R.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01): : 12 - 29
  • [5] Quantitative Determination of Moisture Content in Solar Modules by Short-Wave Infrared Reflectometry
    Kumar, Rishi E.
    von Gastrow, Guillaume
    Leslie, Joswin
    Meier, Rico
    Bertoni, Mariana I.
    Fenning, David P.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (06): : 1748 - 1753
  • [6] Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: A review
    Papargyri, Lamprini
    Theristis, Marios
    Kubicek, Bernhard
    Krametz, Thomas
    Mayr, Christoph
    Papanastasiou, Panos
    Georghiou, George E.
    [J]. RENEWABLE ENERGY, 2020, 145 : 2387 - 2408
  • [7] Sander M., 2013, P 28 EU PVSEC
  • [8] Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements
    Shen, Chao
    Kampwerth, Henner
    Green, Martin
    Trupke, Thorsten
    Carstensen, Juergen
    Schuett, Andreas
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 109 : 77 - 81
  • [9] Wohlgemuth JH, 2006, WORL CON PHOTOVOLT E, P2050
  • [10] Changes of solar cell parameters during damp-heat exposure
    Zhu, Jiang
    Koehl, Michael
    Hoffmann, Stephan
    Berger, Karl Anton
    Zamini, Shokufeh
    Bennett, Ian
    Gerritsen, Eric
    Malbranche, Philippe
    Pugliatti, Paola
    Di Stefano, Agnese
    Aleo, Francesco
    Bertani, Dario
    Paletta, Fabrizio
    Roca, Francesco
    Graditi, Giorgio
    Pellegrino, Michele
    Zubillaga, Oihana
    Iranzo, F. J. Cano
    Pozza, Alberto
    Sample, Tony
    Gottschalg, Ralph
    [J]. PROGRESS IN PHOTOVOLTAICS, 2016, 24 (10): : 1346 - 1358