Existence and generalized Gevrey regularity of solutions to the Kuramoto-Sivashinsky equation in Rn

被引:32
作者
Biswas, Animikh
Swanson, David
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[2] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Kuramoto-Sivashinsky equation; Gevrey regularity;
D O I
10.1016/j.jde.2007.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of Foias and Temam [C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989) 359-369], we prove the existence and Gevrey regularity of local solutions to the Kuramoto-Sivashinsky equation in R-n with initial data in the space of distributions. The control on the Gevrey norm provides an explicit estimate of the analyticity radius in terms of the initial data. In the particular case when n = 1, our analysis allows for initial data that are less smooth than that considered by Grujic and Kukavica [Z. Grujic, I. Kukavica, Space analyticity for the Navier-Stokes and related equations with initial data in LP, J. Funct. Anal. 152 (1998) 447-466]. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 163
页数:19
相关论文
共 34 条
[1]   Local existence and Gevrey regularity of 3-D Navier-Stokes equations with lp initial data [J].
Biswas, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (02) :429-447
[2]   Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted lp initial data [J].
Biswas, Animikh ;
Swanson, David .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1157-1188
[3]   On the non-homogeneous stationary Kuramoto-Sivashinsky equation [J].
Cheskidov, A ;
Foias, C .
PHYSICA D, 2001, 154 (1-2) :1-14
[4]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[5]   ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
PHYSICA D, 1993, 67 (04) :321-326
[6]   Dissipativity and Gevrey regularity of a Smoluchowski equation [J].
Constantin, P ;
Titi, ES ;
Vukadinovic, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (04) :949-969
[7]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[8]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[9]   Nevanlinna-Pick interpolation of attractors [J].
Foias, C ;
Jolly, MS ;
Li, WS .
NONLINEARITY, 2002, 15 (06) :1881-1903
[10]  
FOIAS C, TEXAS A M LECT NOTES