Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm

被引:28
|
作者
Ogana, Friday Nwabueze [1 ]
Ercanli, Ilker [2 ]
机构
[1] Univ Ibadan, Fac Renewable Nat Resources, Dept Social & Environm Forestry, IbadanOyo 200284, Nigeria
[2] Cankiri Karatekin Univ, Fac Forestry, Dept Forest Engn, TR-18200 Cankiri, Turkey
关键词
Artificial intelligence; Height-diameter model; Mixed-effects; Nonlinear least squares; Tropical mixed forest; TREE HEIGHT; GROWTH; REGRESSION; EQUATIONS; ALLOMETRY; BIOMASS;
D O I
10.1007/s11676-021-01373-1
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Modelling tree height-diameter relationships in complex tropical rain forest ecosystems remains a challenge because of characteristics of multi-species, multi-layers, and indeterminate age composition. Effective modelling of such complex systems required innovative techniques to improve prediction of tree heights for use for aboveground biomass estimations. Therefore, in this study, deep learning algorithm (DLA) models based on artificial intelligence were trained for predicting tree heights in a tropical rain forest of Nigeria. The data consisted of 1736 individual trees representing 116 species, and measured from 52 0.25 ha sample plots. A K-means clustering was used to classify the species into three groups based on height-diameter ratios. The DLA models were trained for each species-group in which diameter at beast height, quadratic mean diameter and number of trees per ha were used as input variables. Predictions by the DLA models were compared with those developed by nonlinear least squares (NLS) and nonlinear mixed-effects (NLME) using different evaluation statistics and equivalence test. In addition, the predicted heights by the models were used to estimate aboveground biomass. The results showed that the DLA models with 100 neurons in 6 hidden layers, 100 neurons in 9 hidden layers and 100 neurons in 7 hidden layers for groups 1, 2, and 3, respectively, outperformed the NLS and NLME models. The root mean square error for the DLA models ranged from 1.939 to 3.887 m. The results also showed that using height predicted by the DLA models for aboveground biomass estimation brought about more than 30% reduction in error relative to NLS and NLME. Consequently, minimal errors were created in aboveground biomass estimation compared to those of the classical methods.
引用
收藏
页码:883 / 898
页数:16
相关论文
共 50 条
  • [1] Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm
    Friday Nwabueze Ogana
    Ilker Ercanli
    JournalofForestryResearch, 2022, 33 (03) : 883 - 898
  • [2] Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm
    Friday Nwabueze Ogana
    Ilker Ercanli
    Journal of Forestry Research, 2022, 33 : 883 - 898
  • [3] Height-diameter allometry of tropical forest trees
    Feldpausch, T. R.
    Banin, L.
    Phillips, O. L.
    Baker, T. R.
    Lewis, S. L.
    Quesada, C. A.
    Affum-Baffoe, K.
    Arets, E. J. M. M.
    Berry, N. J.
    Bird, M.
    Brondizio, E. S.
    de Camargo, P.
    Chave, J.
    Djagbletey, G.
    Domingues, T. F.
    Drescher, M.
    Fearnside, P. M.
    Franca, M. B.
    Fyllas, N. M.
    Lopez-Gonzalez, G.
    Hladik, A.
    Higuchi, N.
    Hunter, M. O.
    Iida, Y.
    Salim, K. A.
    Kassim, A. R.
    Keller, M.
    Kemp, J.
    King, D. A.
    Lovett, J. C.
    Marimon, B. S.
    Marimon-Junior, B. H.
    Lenza, E.
    Marshall, A. R.
    Metcalfe, D. J.
    Mitchard, E. T. A.
    Moran, E. F.
    Nelson, B. W.
    Nilus, R.
    Nogueira, E. M.
    Palace, M.
    Patino, S.
    Peh, K. S. -H.
    Raventos, M. T.
    Reitsma, J. M.
    Saiz, G.
    Schrodt, F.
    Sonke, B.
    Taedoumg, H. E.
    Tan, S.
    BIOGEOSCIENCES, 2011, 8 (05) : 1081 - 1106
  • [4] Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil
    da Silva Scaranello, Marcos Augusto
    Alves, Luciana Ferreira
    Vieira, Simone Aparecida
    de Camargo, Plinio Barbosa
    Joly, Carlos Alfredo
    Martinelli, Luiz Antonio
    SCIENTIA AGRICOLA, 2012, 69 (01): : 26 - 37
  • [5] Height-diameter allometry for tropical forest in northern Amazonia
    de Lima, Robson Borges
    Gorgens, Eric Bastos
    Elias, Fernando
    de Abreu, Jadson Coelho
    Baia, Aldine Luiza
    de Oliveira, Cinthia Pereira
    Silva da Silva, Diego Armando
    Bernardina Batista, Anderson Pedro
    Lima, Robson Carmo
    Sotta, Eleneide Doff
    Caraciolo Ferreira, Rinaldo Luiz
    Aleixo da Silva, Jose Antonio
    Guedes, Marcelino Carneiro
    PLOS ONE, 2021, 16 (12):
  • [6] Characterizing height-diameter relationships for Caribbean trees using mixed-effects random forest algorithm
    Yang, Sheng-, I
    Brandeis, Thomas J.
    Helmer, Eileen H.
    Oatham, Michael P.
    Heartsill-Scalley, Tamara
    Marcano-Vega, Humfredo
    FOREST ECOLOGY AND MANAGEMENT, 2022, 524
  • [7] Modeling of tree height-diameter relationships in the Atlantic Forest: effect of forest type on tree allometry
    Cysneiros, Vinicius Costa
    Pelissari, Allan Libanio
    Gaui, Tatiana Dias
    Fiorentin, Luan Demarco
    de Carvalho, Daniel Costa
    Silveira Filho, Telmo Borges
    Machado, Sebastiao Amaral
    CANADIAN JOURNAL OF FOREST RESEARCH, 2020, 50 (12) : 1289 - 1298
  • [8] Comparison of approaches for estimating individual tree height-diameter relationships in the Acadian forest region
    MacPhee, Charles
    Kershaw, John A.
    Weiskittel, Aaron R.
    Golding, Jasen
    Lavigne, Michael B.
    FORESTRY, 2018, 91 (01): : 132 - 146
  • [9] Modelling height-diameter relationships in living Araucaria (Araucariaceae) trees to reconstruct ancient araucarian conifer height
    Xie, Aowei
    Gee, Carole T.
    Griebeler, Eva M.
    PALAEONTOLOGY, 2024, 67 (02)
  • [10] Relationships between diameter and height of trees in natural tropical forest in Tanzania
    Mugasha, Wilson A.
    Bollandsas, Ole M.
    Eid, Tron
    SOUTHERN FORESTS-A JOURNAL OF FOREST SCIENCE, 2013, 75 (04) : 221 - 237