On asymptotic properties of Freud-Sobolev orthogonal polynomials

被引:9
作者
Cachafeiro, A
Marcellán, F
Moreno-Balcázar, JJ
机构
[1] Univ Almeria, Dept Estad & Matemat Aplicada, Almeria 04120, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
[3] Univ Vigo, Dept Matemat Aplicada, Vigo, Spain
[4] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
关键词
Sobolev orthogonal polynomials; freud polynomials; asymptotics;
D O I
10.1016/j.jat.2003.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a Sobolev inner product (f, g)(S) = integral fg dmu + lambda integral f' g' dmu and we characterize the measures mu for which there exists an algebraic relation between the polynomials, {P-n}, orthogonal with respect to the measure P and the polynomials, {Qn}, orthogonal with respect to (*), such that the number of involved terms does not depend on the degree of the polynomials. Thus, we reach in a natural way the measures associated with a Freud weight. In particular, we study the case dmu = e(-x4) dx supported on the full real axis and we analyze the connection between the so-called Nevai polynomials (associated with the Freud weight e(-x4) and the Sobolev orthogonal polynomials Q(n). Finally, we obtain some asymptotics for {Q(n)}. More precisely, we give the relative asymptotics {Q(n)(x)/P-n(x)} on compact subsets of C\R as well as the outer Plancherel-Rotach-type asymptotics {Qn((4)rootnx)/P-n((4)rootnx)} on compact subsets of C\[-a, a] being a = (4)root4/3 (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 41
页数:16
相关论文
共 16 条
[1]   Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs [J].
Alfaro, M ;
Moreno-Balcázar, JJ ;
Pérez, TE ;
Piñar, MA ;
Rezola, ML .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :141-150
[2]   ON RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS [J].
EVANS, WD ;
LITTLEJOHN, LL ;
MARCELLAN, F ;
MARKETT, C ;
RONVEAUX, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (02) :446-467
[3]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[4]   NONNEGATIVE SOLUTIONS OF A NON-LINEAR RECURRENCE [J].
LEW, JS ;
QUARLES, DA .
JOURNAL OF APPROXIMATION THEORY, 1983, 38 (04) :357-379
[5]  
LOPEZ G, 1988, LECT NOTES MATH, V1329, P125
[6]   Laguerre-Sobolev orthogonal polynomials [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) :245-265
[7]  
MARCELLAN F, 1994, MATH APPL, V296, P71
[8]   Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials [J].
Marcellán, F ;
Moreno-Balcázar, JJ .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (01) :54-73
[9]   Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures [J].
Martinez-Finkelshtein, A ;
Moreno-Balcazar, JJ ;
Perez, TE ;
Pinar, MA .
JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) :280-293
[10]   Analytic aspects of Sobolev orthogonal polynomials revisited [J].
Martínez-Finkelshtein, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :255-266