CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell

被引:11
作者
Du, Jiandi [1 ]
Ding, Dongyan [1 ]
Zhang, Wenlong [1 ]
Xu, Zhou [1 ]
Gao, Yongjin [2 ]
Chen, Guozhen [2 ]
Chen, Weigao [2 ]
You, Xiaohua [2 ]
Chen, Renzong [3 ]
Huang, Yuanwei [3 ]
Tang, Jinsong [3 ]
机构
[1] Shanghai Iiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Huafon NLM Al Co Ltd, Shanghai 201506, Peoples R China
[3] Shanghai Huafon Mat Technol Inst, Shanghai 201203, Peoples R China
关键词
Al-Cu-Mn-Mg-Fe alloy; CeLa addition; Potentiodynamic polarization; Electrochemical impedance spectroscopy; ELECTROCHEMICAL-BEHAVIOR; ALUMINUM-ALLOYS; NACL SOLUTION; INTERMETALLIC PHASES; LOCALIZED CORROSION; CHLORIDE SOLUTIONS; PITTING CORROSION; MAGNESIUM ALLOY; AA; 2024-T3; MICROSTRUCTURE;
D O I
10.1016/j.apsusc.2017.06.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg- Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al-6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 degrees C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 52 条
[1]  
Aruga Y., 2012, United States Patent, Patent No. [US2012227870-A1, 2012227870]
[2]   Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia [J].
Behzadnasab, M. ;
Mirabedini, S. M. ;
Esfandeh, M. .
CORROSION SCIENCE, 2013, 75 :134-141
[3]   Electrochemical characteristics of intermetallic phases in aluminum alloys - An experimental survey and discussion [J].
Birbilis, N ;
Buchheit, RG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :B140-B151
[4]   Corrosion of AA2024-T3 Part I. Localised corrosion of isolated IM particles [J].
Boag, A. ;
Hughes, A. E. ;
Glenn, A. M. ;
Muster, T. H. ;
McCulloch, D. .
CORROSION SCIENCE, 2011, 53 (01) :17-26
[5]   Stable pit formation on AA2024-T3 in a NaCl environment [J].
Boag, A. ;
Taylor, R. J. ;
Muster, T. H. ;
Goodman, N. ;
McCulloch, D. ;
Ryan, C. ;
Rout, B. ;
Jamieson, D. ;
Hughes, A. E. .
CORROSION SCIENCE, 2010, 52 (01) :90-103
[6]   How complex is the microstructure of AA2024-T3? [J].
Boag, A. ;
Hughes, A. E. ;
Wilson, N. C. ;
Torpy, A. ;
MacRae, C. M. ;
Glenn, A. M. ;
Muster, T. H. .
CORROSION SCIENCE, 2009, 51 (08) :1565-1568
[7]  
Bommer H., 1998, MG ALLOYS THEIR APPL
[8]   A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS [J].
BOUKAMP, BA .
SOLID STATE IONICS, 1986, 20 (01) :31-44
[9]   Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J].
Brunner, J. G. ;
Birbilis, N. ;
Ralston, K. D. ;
Virtanen, S. .
CORROSION SCIENCE, 2012, 57 :209-214
[10]   A COMPILATION OF CORROSION POTENTIALS REPORTED FOR INTERMETALLIC PHASES IN ALUMINUM-ALLOYS [J].
BUCHHEIT, RG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3994-3996