Duffing equation with two periodic forcings: The phase effect

被引:40
|
作者
Yang, JZ [1 ]
Qu, ZL [1 ]
Hu, G [1 ]
机构
[1] CHINA CTR ADV SCI & TECHNOL,CTR THEORET PHYS,WORLD LAB,BEIJING 100080,PEOPLES R CHINA
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 05期
关键词
D O I
10.1103/PhysRevE.53.4402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weak additional sinusoidal perturbation is applied to the periodically forced nonlinear oscillator to suppress chaos. Numerical simulations show that the phase difference between the two sinusoidal forces plays a very important role in controlling chaos. When the frequencies of these forces deviate from the resonance condition slightly, a different type of intermittency, alternation from regular motion to chaotic motion (called breather here), is observed. If the phase difference follows a Wiener process, conventional intermittency is observed.
引用
收藏
页码:4402 / 4413
页数:12
相关论文
共 50 条
  • [41] STABILITY AND INDEX OF PERIODIC-SOLUTIONS OF AN EQUATION OF DUFFING TYPE
    ORTEGA, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1989, 3B (03): : 533 - 546
  • [42] Periodic Solutions of Duffing Equation with an Asymmetric Nonlinearity and a Deviating Argument
    Wang, Zaihong
    Li, Jin
    Ma, Tiantian
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [43] Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation
    Yaqun Peng
    Xinli Zhang
    Daxiong Piao
    Chinese Annals of Mathematics, Series B, 2021, 42 : 85 - 104
  • [44] Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation
    Peng, Yaqun
    Zhang, Xinli
    Piao, Daxiong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (01) : 85 - 104
  • [45] Periodic solutions of Duffing equation with strong non-linearity
    Marinca, Vasile
    Herisanu, Nicolae
    CHAOS SOLITONS & FRACTALS, 2008, 37 (01) : 144 - 149
  • [46] Effect of various periodic forces on Duffing oscillator
    Ravichandran, V.
    Chinnathambi, V.
    Rajasekar, S.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (02): : 351 - 356
  • [47] Effect of various periodic forces on duffing oscillator
    V Ravichandran
    V Chinnathambi
    S Rajasekar
    Pramana, 2006, 67 : 351 - 356
  • [48] Exact Multiplicity and Stability of Periodic Solutions for Duffing Equation with Bifurcation Method
    Shuqing Liang
    Qualitative Theory of Dynamical Systems, 2019, 18 : 477 - 493
  • [49] A constructive proof of existence and uniqueness of 2π-periodic solution to Duffing equation
    Li, WG
    Shen, ZH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (07) : 1209 - 1220
  • [50] On Periodic Perturbations of Asymmetric Duffing-Van-der-Pol Equation
    Morozov, Albert D.
    Kostromina, Olga S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (05):