Forbidden Vertices

被引:19
作者
Angulo, Gustavo [1 ,2 ]
Ahmed, Shabbir [1 ]
Dey, Santanu S. [1 ]
Kaibel, Volker [3 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Pontificia Univ Catolica Chile, Dept Ingn Ind & Sistemas, Santiago 13101, Chile
[3] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
关键词
forbidden vertices; vertex enumeration; extended formulation; k-best solutions; all-different polytopes; OPTIMIZATION PROBLEMS; COLORING FORMULATION; PROGRAMS;
D O I
10.1287/moor.2014.0673
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we introduce and study the forbidden-vertices problem. Given a polytope P and a subset X of its vertices, we study the complexity of linear optimization over the subset of vertices of P that are not contained in X. This problem is closely related to finding the k-best basic solutions to a linear problem. We show that the complexity of the problem changes significantly depending on the encoding of both P and X. We provide additional tractability results and extended formulations when P has binary vertices only. Some applications and extensions to integral polytopes are discussed.
引用
收藏
页码:350 / 360
页数:11
相关论文
共 19 条
[1]   How good are convex hull algorithms? [J].
Avis, D ;
Bremner, D ;
Seidel, R .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (5-6) :265-301
[2]   The negative cycles polyhedron and hardness of checking some polyhedral properties [J].
Boros, Endre ;
Elbassioni, Khaled ;
Gurvich, Vladimir ;
Tiwary, Hans Raj .
ANNALS OF OPERATIONS RESEARCH, 2011, 188 (01) :63-76
[3]   Extended formulations in combinatorial optimization [J].
Conforti, Michele ;
Cornuejols, Gerard ;
Zambelli, Giacomo .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2010, 8 (01) :1-48
[4]  
Fiorini S, 2013, PREPRINT
[5]  
Fiorini S, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P95
[6]  
Gupte A, 2013, PREPRINT
[7]   Generating all vertices of a polyhedron is hard [J].
Khachiyan, Leonid ;
Boros, Endre ;
Borys, Konrad ;
Elbassioni, Khaled ;
Gurvich, Vladimir .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) :174-190
[8]   THE INTEGER L-SHAPED METHOD FOR STOCHASTIC INTEGER PROGRAMS WITH COMPLETE RECOURSE [J].
LAPORTE, G ;
LOUVEAUX, FV .
OPERATIONS RESEARCH LETTERS, 1993, 13 (03) :133-142
[9]   PROCEDURE FOR COMPUTING K BEST SOLUTIONS TO DISCRETE OPTIMIZATION PROBLEMS AND ITS APPLICATION TO SHORTEST PATH PROBLEM [J].
LAWLER, EL .
MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (07) :401-405
[10]   Separating type-I odd-cycle inequalities for a binary-encoded edge-coloring formulation [J].
Lee, J ;
Leung, J ;
De Vries, S .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2005, 9 (01) :59-67