CONJUGATE HEAT TRANSFER ANALYSIS OF A HIGH PRESSURE AIR-COOLED GAS TURBINE VANE

被引:0
|
作者
Wang Zhenfeng [1 ]
Yan Peigang [1 ]
Huang Hongyan [1 ]
Han Wanjin [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
关键词
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The ANSYS-CFX software is used to simulate NASA-MarkII high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-omega-SST-gamma-theta turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-omega-SST-gamma-theta turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-omega-SST-gamma-theta turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of MarkII blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [1] The Simulation Study of Turbulence Models for Conjugate Heat Transfer Analysis of a High Pressure Air-Cooled Gas Turbine
    Wang Zhenfeng
    Yan Peigang
    Tang Hongfei
    Huang Hongyan
    Han Wanjin
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 5: FUEL CELLS, GAS TURBINES, HEAT PIPES, JET IMPINGEMENT, RADIATION, 2010, : 135 - 142
  • [2] Conjugate heat transfer simulation of a high pressure air-cooled gas turbine with transition flow characteristics
    Zhou, Hong-Ru
    Wang, Zhen-Feng
    Yan, Pei-Gang
    Liu, Zhan-Sheng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2010, 25 (06): : 1221 - 1226
  • [3] Conjugate Heat Transfer of an Internally Air-Cooled Nozzle Guide Vane and Shrouds
    Jiang, Leiyong
    Wu, Xijia
    Zhang, Zhong
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [4] APPLICATION OF CONJUGATE HEAT TRANSFER ANALYSIS TO IMPROVEMENT OF COOLED TURBINE VANE AND BLADE FOR INDUSTRIAL GAS TURBINE
    Horiuchi, Takeshi
    Taniguchi, Tomoki
    Tanaka, Ryozo
    Ryu, Masanori
    Kazari, Masahide
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 5A, 2018,
  • [5] CONJUGATE HEAT TRANSFER ANALYSIS OF A FILM-COOLED TURBINE VANE
    Ni, Ron Ho
    Humber, William
    Fan, George
    Johnson, P. Dean
    Downs, Jim
    Clark, J. P.
    Koch, P. J.
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 5, PTS A AND B, 2012, : 423 - 434
  • [6] Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes
    Li X.
    Liu H.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (11): : 2378 - 2386
  • [7] COUPLED BEM AND FDM CONJUGATE ANALYSIS OF A THREE-DIMENSIONAL AIR-COOLED TURBINE VANE
    Wang Zhenfeng
    Yan Peigang
    Huang Hongyan
    Han Wanjin
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 3, PTS A AND B, 2009, : 21 - 30
  • [8] Conjugate heat transfer analysis of a radially cooled nozzle guide vane in an aero gas turbine engine
    Arunkumar, G. L.
    Shetty, Balachandra P.
    Mishra, R. K.
    INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 2023, 40 (01) : 93 - 100
  • [9] Research on Aerodynamic Characteristics of Air-cooled Turbine Blade with Conjugate Heat Transfer Method
    Zhang, Jing Jing
    Wang, Lian Fu
    Fang, Xiang Jun
    THERMAL, POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2013, 732-733 : 270 - +
  • [10] Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
    Ai, Weiguo
    Fletcher, Thomas H.
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2012, 134 (04):