Dual-domain sparse-view CT reconstruction with Transformers

被引:17
作者
Shi, Changrong
Xiao, Yongshun [1 ]
Chen, Zhiqiang
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2022年 / 101卷
基金
中国国家自然科学基金;
关键词
Sparse-view computed tomography; Reconstruction; Dual-domain; Transformers; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; NEURAL-NETWORK; CONTRAST;
D O I
10.1016/j.ejmp.2022.07.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Computed Tomography (CT) has been widely used in the medical field. Sparse-view CT is an effective and feasible method to reduce the radiation dose. However, the conventional filtered back projection (FBP) algorithm will suffer from severe artifacts in sparse-view CT. Iterative reconstruction algorithms have been adopted to remove artifacts, but they are time-consuming due to repeated projection and back projection and may cause blocky effects. To overcome the difficulty in sparse-view CT, we proposed a dual-domain sparse-view CT algorithm CT Transformer (CTTR) and paid attention to sinogram information. Methods: CTTR treats sinograms as sentences and enhances reconstructed images with sinogram's characteristics. We qualitatively evaluate the CTTR, an iterative method TVM-POCS, a convolutional neural network based method FBPConvNet in terms of a reduction in artifacts and a preservation of details. Besides, we also quantitatively evaluate these methods in terms of RMSE, PSNR and SSIM. Results: We evaluate our method on the Lung Image Database Consortium image collection with different numbers of projection views and noise levels. Experiment studies show that, compared with other methods, CTTR can reduce more artifacts and preserve more details on various scenarios. Specifically, CTTR improves the FBPConvNet performance of PSNR by 0.76 dB with 30 projections. Conclusions: The performance of our proposed CTTR is better than the method based on CNN in the case of extremely sparse views both on visual results and quantitative evaluation. Our proposed method provides a new idea for the application of Transformers to CT image processing.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 39 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Practical and Effective ALARA [J].
Bevelacqua, Joseph John .
HEALTH PHYSICS, 2010, 98 (05) :S39-S47
[3]   Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT [J].
Bian, Junguo ;
Siewerdsen, Jeffrey H. ;
Han, Xiao ;
Sidky, Emil Y. ;
Prince, Jerry L. ;
Pelizzari, Charles A. ;
Pan, Xiaochuan .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (22) :6575-6599
[4]  
Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
[5]   A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction [J].
Chang, Ming ;
Li, Liang ;
Chen, Zhiqiang ;
Xiao, Yongshun ;
Zhang, Li ;
Wang, Ge .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2013, 21 (02) :161-176
[6]   Pre-Trained Image Processing Transformer [J].
Chen, Hanting ;
Wang, Yunhe ;
Guo, Tianyu ;
Xu, Chang ;
Deng, Yiping ;
Liu, Zhenhua ;
Ma, Siwei ;
Xu, Chunjing ;
Xu, Chao ;
Gao, Wen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12294-12305
[7]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[8]   Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach [J].
Cho, Sanghoon ;
Lim, Sunho ;
Kim, Changhwan ;
Wi, Sunhee ;
Kwon, Taejin ;
Youn, Won Sik ;
Lee, Sang Hyun ;
Kang, Bo Sun ;
Cho, Seungryong .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 70 :1-9
[9]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306