Extended phase diagram of the Lorenz model

被引:24
作者
Dullin, H. R. [1 ]
Schmidt, S. [1 ]
Richter, P. H. [2 ]
Grossmann, S. K. [3 ]
机构
[1] Univ Loughborough, Loughborough LE11 3TU, Leics, England
[2] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany
[3] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 09期
关键词
Lorenz equations; parameter space analysis; phase diagram; bifurcations; periodic orbits; attractors; scaling;
D O I
10.1142/S021812740701883X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The parameter dependence of the various attractive solutions of the three variable nonlinear Lorenz equations is studied as a function of r, the normalized Rayleigh number, and of sigma, the Prandtl number. Previous work, either for fixed sigma and all r or along sigma x r and sigma infinity root r, is extended to the entire (r, sigma) parameter plane. An onion-like periodic pattern is found which is due to the alternating stability of symmetric and nonsymmetric periodic orbits. This periodic pattern is explained by considering non-trivial limits of large r and sigma and thus interpolating between the above mentioned cases. The mathematical analysis uses Airy functions as introduced in previous work, but instead of concentrating on the Lorenz map we analyze the trajectories in full phase space. The periodicity of the Airy function allows to calculate analytically the periodic onion structure in the (r, sigma)- plane. Previous observations about sequences of bifurcations are confirmed, and more details regarding their symmetry are reported.
引用
收藏
页码:3013 / 3033
页数:21
相关论文
共 28 条
  • [1] AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
  • [2] SYSTEMATICS OF THE LORENZ MODEL AT SIGMA=10
    ALFSEN, KH
    FROYLAND, J
    [J]. PHYSICA SCRIPTA, 1985, 31 (01): : 15 - 20
  • [3] Wind reversals in turbulent Rayleigh-Benard convection
    Araujo, FF
    Grossmann, S
    Lohse, D
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [4] THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS
    CHUA, LO
    KOMURO, M
    MATSUMOTO, T
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11): : 1072 - 1097
  • [5] DING MZ, 1988, COMMUN THEOR PHYS, V9, P375
  • [6] Symbolic dynamics of the Lorenz equations
    Fang, HP
    Hao, BL
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (02) : 217 - 246
  • [7] FOWLER AC, 1983, STUD APPL MATH, V69, P99
  • [8] A DESCRIPTION OF THE LORENTZ ATTRACTOR AT HIGH PRANDTL NUMBER
    FOWLER, AC
    MCGUINNESS, MJ
    [J]. PHYSICA D, 1982, 5 (2-3): : 149 - 182
  • [9] T-POINTS - A CODIMENSION 2 HETEROCLINIC BIFURCATION
    GLENDINNING, P
    SPARROW, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (3-4) : 479 - 488
  • [10] LOCAL AND GLOBAL BEHAVIOR NEAR HOMOCLINIC ORBITS
    GLENDINNING, P
    SPARROW, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) : 645 - 696