Visual Clustering Factors in Scatterplots

被引:9
|
作者
Xia, Jiazhi [1 ]
Lin, Weixing [2 ,3 ]
Jiang, Guang [4 ]
Wang, Yunhai [5 ]
Chen, Wei [6 ]
Schreck, Tobias [7 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Comp Sci & Technol, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Visual Analyt Lab, Changsha 410083, Hunan, Peoples R China
[4] Cent South Univ, Changsha 410083, Hunan, Peoples R China
[5] Shandong Univ, Sch Comp Sci & Technol, Jinan 250100, Peoples R China
[6] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Peoples R China
[7] Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Knowledge Visualizat, A-8070 Graz, Styria, Austria
基金
中国国家自然科学基金;
关键词
Visualization; Shape; Visual perception; Clustering algorithms; Deep learning; Splines (mathematics); Computer science;
D O I
10.1109/MCG.2021.3098804
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cluster analysis is an important technique in data analysis. However, there is no encompassing theory on scatterplots to evaluate clustering. Human visual perception is regarded as a gold standard to evaluate clustering. The cluster analysis based on human visual perception requires the participation of many probands, to obtain diverse data, and hence is a challenge to do. We contribute an empirical and data-driven study on human perception for visual clustering of large scatterplot data. First, we systematically construct and label a large, publicly available scatterplot dataset. Second, we carry out a qualitative analysis based on the dataset and summarize the influence of visual factors on clustering perception. Third, we use the labeled datasets to train a deep neural network for modeling human visual clustering perception. Our experiments show that the data-driven model successfully models the human visual perception, and outperforms conventional clustering algorithms in synthetic and real datasets.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [31] Scatterplots with survey data
    Korn, EL
    Graubard, BI
    AMERICAN STATISTICIAN, 1998, 52 (01): : 58 - 69
  • [32] DISCRIMINATING STRATA IN SCATTERPLOTS
    LEWANDOWSKY, S
    SPENCE, I
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (407) : 682 - 688
  • [33] THE MONOTONE SMOOTHING OF SCATTERPLOTS
    FRIEDMAN, J
    TIBSHIRANI, R
    TECHNOMETRICS, 1984, 26 (03) : 243 - 250
  • [34] Scatterplots for unordered pairs
    Ernst, MD
    Guerra, R
    Schucany, WR
    AMERICAN STATISTICIAN, 1996, 50 (03): : 260 - 265
  • [35] On the Benefits of Using Constant Visual Angle Glyphs in Interactive Exploration of 3D Scatterplots
    Stenholt, Rasmus
    ACM TRANSACTIONS ON APPLIED PERCEPTION, 2015, 11 (04)
  • [36] Evaluation of Symbol Contrast in Scatterplots
    Li, Jing
    van Wijk, Jarke J.
    Martens, Jean-Bernard
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2009, PROCEEDINGS, 2009, : 97 - 104
  • [37] Scatterplots for logistic regression - Rejoinder
    Eno, DR
    Terrell, GR
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (03) : 428 - 430
  • [38] Scatterplots: Tasks, Data, and Designs
    Sarikaya, Alper
    Gleicher, Michael
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 402 - 412
  • [39] A Nested Hierarchy of Localized Scatterplots
    Eisemann, Martin
    Albuquerque, Georgia
    Magnor, Marcus
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 80 - 86
  • [40] ScagExplorer: Exploring Scatterplots by Their Scagnostics
    Tuan Nhon Dang
    Wilkinson, Leland
    2014 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2014, : 73 - 80