Visual Clustering Factors in Scatterplots

被引:9
|
作者
Xia, Jiazhi [1 ]
Lin, Weixing [2 ,3 ]
Jiang, Guang [4 ]
Wang, Yunhai [5 ]
Chen, Wei [6 ]
Schreck, Tobias [7 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Comp Sci & Technol, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Visual Analyt Lab, Changsha 410083, Hunan, Peoples R China
[4] Cent South Univ, Changsha 410083, Hunan, Peoples R China
[5] Shandong Univ, Sch Comp Sci & Technol, Jinan 250100, Peoples R China
[6] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Peoples R China
[7] Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Knowledge Visualizat, A-8070 Graz, Styria, Austria
基金
中国国家自然科学基金;
关键词
Visualization; Shape; Visual perception; Clustering algorithms; Deep learning; Splines (mathematics); Computer science;
D O I
10.1109/MCG.2021.3098804
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cluster analysis is an important technique in data analysis. However, there is no encompassing theory on scatterplots to evaluate clustering. Human visual perception is regarded as a gold standard to evaluate clustering. The cluster analysis based on human visual perception requires the participation of many probands, to obtain diverse data, and hence is a challenge to do. We contribute an empirical and data-driven study on human perception for visual clustering of large scatterplot data. First, we systematically construct and label a large, publicly available scatterplot dataset. Second, we carry out a qualitative analysis based on the dataset and summarize the influence of visual factors on clustering perception. Third, we use the labeled datasets to train a deep neural network for modeling human visual clustering perception. Our experiments show that the data-driven model successfully models the human visual perception, and outperforms conventional clustering algorithms in synthetic and real datasets.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [21] Temporal scatterplots
    Or Patashnik
    Min Lu
    Amit H. Bermano
    Daniel Cohen-Or
    Computational Visual Media, 2020, 6 : 385 - 400
  • [22] Temporal scatterplots
    Patashnik, Or
    Lu, Min
    Bermano, Amit H.
    Cohen-Or, Daniel
    COMPUTATIONAL VISUAL MEDIA, 2020, 6 (04) : 385 - 400
  • [23] Cross-modal equivalence of visual and auditory scatterplots for exploring bivariate data samples
    Flowers, JH
    Buhman, DC
    Turnage, KD
    HUMAN FACTORS, 1997, 39 (03) : 341 - 351
  • [24] Shape Perception in 3-D Scatterplots Using Constant Visual Angle Glyphs
    Stenholt, Rasmus
    Madsen, Claus B.
    IEEE VIRTUAL REALITY CONFERENCE 2012 PROCEEDINGS, 2012, : 61 - 62
  • [25] Visual Model Fit Estimation in Scatterplots and Distribution of Attention Influence of Slope and Noise Level
    Reimann, Daniel
    Blech, Christine
    Gaschler, Robert
    EXPERIMENTAL PSYCHOLOGY, 2020, 67 (05) : 292 - 302
  • [26] CORE ZONE SCATTERPLOTS - A NEW APPROACH TO FEATURE-EXTRACTION FOR VISUAL-DISPLAYS
    BEZDEK, JC
    CHIOU, EW
    COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 41 (02): : 186 - 209
  • [27] The Perception of Correlation in Scatterplots
    Rensink, Ronald A.
    Baldridge, Gideon
    COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 1203 - 1210
  • [28] Interactive Visual Clustering
    desJardins, Marie
    MacGlashan, James
    Ferraioli, Julia
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2007, : 361 - 364
  • [29] In praise of simple scatterplots
    Cuffe, Paul
    IEEE Potentials, 2021, 40 (05): : 36 - 38
  • [30] Discontinuities in Continuous Scatterplots
    Lehmann, Dirk J.
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1291 - 1300