Visual Clustering Factors in Scatterplots

被引:9
|
作者
Xia, Jiazhi [1 ]
Lin, Weixing [2 ,3 ]
Jiang, Guang [4 ]
Wang, Yunhai [5 ]
Chen, Wei [6 ]
Schreck, Tobias [7 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Comp Sci & Technol, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Visual Analyt Lab, Changsha 410083, Hunan, Peoples R China
[4] Cent South Univ, Changsha 410083, Hunan, Peoples R China
[5] Shandong Univ, Sch Comp Sci & Technol, Jinan 250100, Peoples R China
[6] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Peoples R China
[7] Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Knowledge Visualizat, A-8070 Graz, Styria, Austria
基金
中国国家自然科学基金;
关键词
Visualization; Shape; Visual perception; Clustering algorithms; Deep learning; Splines (mathematics); Computer science;
D O I
10.1109/MCG.2021.3098804
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cluster analysis is an important technique in data analysis. However, there is no encompassing theory on scatterplots to evaluate clustering. Human visual perception is regarded as a gold standard to evaluate clustering. The cluster analysis based on human visual perception requires the participation of many probands, to obtain diverse data, and hence is a challenge to do. We contribute an empirical and data-driven study on human perception for visual clustering of large scatterplot data. First, we systematically construct and label a large, publicly available scatterplot dataset. Second, we carry out a qualitative analysis based on the dataset and summarize the influence of visual factors on clustering perception. Third, we use the labeled datasets to train a deep neural network for modeling human visual clustering perception. Our experiments show that the data-driven model successfully models the human visual perception, and outperforms conventional clustering algorithms in synthetic and real datasets.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [1] Dimensional density and clustering in scatterplots
    Tang, Lei
    Li, Xue-Qing
    Liu, Yang
    Ruan Jian Xue Bao/Journal of Software, 2010, 21 (SUPPL. 1): : 194 - 204
  • [2] IDENTIFICATION OF VISUAL CORRELATIONAL SCATTERPLOTS
    POLLACK, I
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1960, 59 (06): : 351 - 360
  • [3] Parallel scatterplots: Visual analysis with GPU
    State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou 310058, China
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 2008, 9 (1219-1228):
  • [4] Towards Perceptual Optimization of the Visual Design of Scatterplots
    Micallef, Luana
    Palmas, Gregorio
    Oulasvirta, Antti
    Weinkauf, Tino
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (06) : 1588 - 1599
  • [5] Investigating the Visual Utility of Differentially Private Scatterplots
    Panavas, Liudas
    Crnovrsanin, Tarik
    Adams, Jane Lydia
    Ullman, Jonathan
    Sargavad, Ali
    Tory, Melanie
    Dunne, Cody
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 5370 - 5385
  • [6] Visual Abstraction and Exploration of Multi-class Scatterplots
    Chen, Haidong
    Chen, Wei
    Mel, Honghui
    Liu, Zhiqi
    Zhou, Kun
    Chen, Weifeng
    Gu, Wentao
    Ma, Kwan-Liu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1683 - 1692
  • [7] Visual Validation versus Visual Estimation: A Study on the Average Value in Scatterplots
    Braun, Daniel
    Suh, Ashley
    Chang, Remco
    Gleicher, Michael
    von Landesberger, Tatiana
    2023 IEEE VISUALIZATION AND VISUAL ANALYTICS, VIS, 2023, : 181 - 185
  • [8] Cluster-Based Visual Abstraction for Multivariate Scatterplots
    Liao, Hongsen
    Wu, Yingcai
    Chen, Li
    Chen, Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2531 - 2545
  • [9] ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots
    Ma, Yuxin
    Tung, Anthony K. H.
    Wang, Wei
    Gao, Xiang
    Pan, Zhigeng
    Chen, Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (03) : 1562 - 1576
  • [10] Visual Cue Effects on a Classification Accuracy Estimation Task in Immersive Scatterplots
    Yang, Fumeng
    Tompkin, James
    Harrison, Lane
    Laidlaw, David H.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (12) : 4858 - 4873