Geometry of α-Cosymplectic Metric as *-Conformal η-Ricci-Yamabe Solitons Admitting Quarter-Symmetric Metric Connection

被引:8
作者
Zhang, Pengfei [1 ]
Li, Yanlin [2 ]
Roy, Soumendu [3 ]
Dey, Santu [4 ]
机构
[1] Harbin Normal Univ, Coll Teacher Educ, Harbin 150025, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] Jadavpur Univ, Dept Math, Kolkata 700032, India
[4] Bidhan Chandra Coll, Dept Math, Asansol 713304 4, Rishra, India
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
基金
中国国家自然科学基金;
关键词
Ricci-Yamabe soliton; *-conformal eta-Ricci-Yamabe soliton; conformal killing vector field; alpha-cosymplectic manifolds; K-CONTACT; SUBMANIFOLDS; CURVATURE; THEOREMS; CURRENTS; COMPACT;
D O I
10.3390/sym13112189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The outline of this research article is to initiate the development of a *-conformal eta-Ricci-Yamabe soliton in alpha-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of alpha-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from *-conformal eta-Ricci-Yamabe soliton equation when the potential vector field xi of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field's conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional alpha-cosymplectic metric as a *-conformal eta-Ricci-Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results.
引用
收藏
页数:16
相关论文
共 64 条
  • [1] [Anonymous], 2015, Balkan J. Geom. Appl.
  • [2] [Anonymous], 1993, Int. J. Math. Math. Sci., DOI DOI 10.1155/S0161171293000675
  • [3] On conformal solutions of the Yamabe flow
    Barbosa, Ezequiel
    Ribeiro, Ernani, Jr.
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (01) : 79 - 89
  • [4] Compact almost Ricci solitons with constant scalar curvature are gradient
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01): : 29 - 39
  • [5] SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS
    Barros, A.
    Ribeiro, E., Jr.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) : 1033 - 1040
  • [6] Almost η-Ricci solitons in (LCS)n-manifolds
    Blaga, Adara M.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (05) : 641 - +
  • [7] Blair D.E., 1976, CONTACT MANIFOLDS RI, V509
  • [8] Calin C, 2012, REV ROUM MATH PURES, V57, P55
  • [9] Ricci solitons in three-dimensional paracontact geometry
    Calvaruso, Giovanni
    Perrone, Antonella
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 1 - 12
  • [10] Gradient Einstein solitons
    Catino, Giovanni
    Mazzieri, Lorenzo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 66 - 94