On Kp,q -FACTORIZATION OF COMPLETE BIPARTITE MULTIGRAPHS

被引:0
作者
Li, Mingchao [1 ]
Wang, Jian [2 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Nantong Vocat Univ, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete bipartite multigraph; factor; factorization; PATH FACTORIZATION; GRAPHS; P4K-1-FACTORIZATION;
D O I
10.1007/s13226-017-0221-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda K-m,K-n be a complete bipartite multigraph with two partite sets having m and n vertices, respectively. A K-p,K-q-factorization of lambda K-m,K-n is a set of edge-disjoint K-p,K-q-factors of lambda K-m,K-n which partition the set of edges of lambda K-m,K-n. When p = 1 and q is a prime number, Wang, in his paper [On K-1,K-q-factorization of complete bipartite graph, Discrete Math., 126: (1994), 359-364, investigated the K-1,K-q-factorization of K-m,K-n and gave a sufficient condition for such a factorization to exist. In papers [K-1,K-k-factorization of complete bipartite graphs, Discrete Math., 259: 301-306 (2002),, K-p,K-q-factorization of complete bipartite graphs, Sci. China Ser. A-Math., 47: (2004), 473-479], Du and Wang extended Wang's result to the case that p and q are any positive integers. In this paper, we give a sufficient condition for, lambda K-m,K-n to have a K-p,K-q-factorization. As a special case, it is shown that the necessary condition for the K-p,K-q-factorization of, lambda K-m,K-n is always sufficient when p : q = k : (k + 1) for any positive integer k.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 17 条
[11]   P3-FACTORIZATION OF COMPLETE BIPARTITE GRAPHS [J].
USHIO, K .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :361-366
[12]   P(2P)-FACTORIZATION OF A COMPLETE BIPARTITE GRAPH [J].
WANG, H .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :307-308
[13]   ON K(1,K)FACTORIZATIONS OF A COMPLETE BIPARTITE GRAPH [J].
WANG, H .
DISCRETE MATHEMATICS, 1994, 126 (1-3) :359-364
[14]   The spectrum of path factorization of bipartite multigraphs [J].
Wang, Jian ;
Du, Bei-liang .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07) :1045-1054
[15]   P4k-1-factorization of bipartite multigraphs [J].
Wang Jian ;
Du Beiliang .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (07) :961-970
[16]   DESIGN OF A NEW BALANCED FILE ORGANIZATION SCHEME WITH LEAST REDUNDANCY [J].
YAMAMOTO, S ;
IKEDA, H ;
SHIGEEDA, S ;
USHIO, K ;
HAMADA, N .
INFORMATION AND CONTROL, 1975, 28 (02) :156-175
[17]  
Yamamoto S., 1979, ACM T DATABASE SYST, V4, P361